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Christopher Meek, Bo Thiesson and David HeckermanMicrosoft ResearchRedmond, WA 98052-6399fmeek,thiesson,heckermag@microsoft.comAbstractIn this paper, we introduce and evaluate adata-driven staged mixture modeling tech-nique for building density, regression, andclassi�cation models. Our basic approach isto sequentially add components to a �nitemixture model using the structural expec-tation maximization (SEM) algorithm. Weshow that our technique is qualitatively sim-ilar to boosting. This correspondence is anatural byproduct of the fact that we usethe SEM algorithm to sequentially �t themixture model. Finally, in our experimentalevaluation, we demonstrate the e�ectivenessof our approach on a variety of predictionand density estimation tasks using real-worlddata.1 IntroductionIn this paper, we introduce and evaluate what we callthe staged mixture modeling (SMM) approach; a data-driven staged mixture modeling technique for buildingdensity, regression, and classi�cation models. Our ap-proach is to add components to a �nite mixture modelin stages using the structural expectation maximiza-tion (SEM) algorithm. More speci�cally, at the nthstage we �x the relative mixture weights and parame-ters of the �rst n�1 components of the mixture model,and add the nth component with a prespeci�ed initialmixture weight. We then train the new componentand mixture weight using the Bayesian InformationCriterion (BIC); a penalized maximum likelihood.We show that our method is qualitatively similar toa variety of boosting methods. Boosting methods areensemble methods in which one sequentially adds newpredictor components to the ensemble (e.g., Freund &Schapire, 1997). The new predictor components aretrained on the basis of a reweighted version of the

data set in which cases that are not predicted wellare given a higher weight. The connection to boostingis a natural byproduct of the fact that we use the SEMalgorithm to sequentially �t the mixture model. E�ec-tively, the SEM algorithm reweights the cases by com-puting a membership probability for the new compo-nent. The membership probability re
ects the degreeto which the data are not well-predicted by the mix-ture model without the current component|the worsethe prediction, the more weight the case is given. Thereweighted data is then used to learn the new com-ponent. Although our method is qualitatively similarto many approaches for boosting, it di�ers in manyspeci�c details. We highlight some of the di�erencesby contrasting our approach with the popular boost-ing methods of Friedman, Hastie, & Tibshirani (1998)and Friedman (1999).Our approach has several bene�ts over alternative ap-proaches to boosting. First, our method can easily beapplied to any learning method that can learn fromfractionally weighted data. Second, our method al-lows one to boost density models as well as regressionand classi�cation models. In addition, our methodprovides a principled means of optimizing both theweights and the structures of the component models.In our experimental evaluation, we evaluate the perfor-mance of our approach on a variety of prediction anddensity estimation tasks using real-world data. We usethe following types of component models: For classi�-cation, we use decision trees with a bounded numberof leaves; and for density estimation, we use Bayesiannetworks whose local distributions are regression treeswith a bounded number of leaves. We also evaluatevarious alternative versions of our algorithm to high-light which aspects are crucial to successful implemen-tation.



2 AlgorithmThroughout the paper, we use the following syntac-tic conventions. We denote a variable by an uppercase token (e.g. A;Bi; Y;�) and a state or value ofthat variable by the same token in lower case (e.g.a; bi; y; �). We denote sets with bold-face capitalizedtokens (e.g. A;X) and corresponding sets of values bybold-face lower case tokens (e.g. a;x).Our approach is based on mixture models. An n com-ponent mixture model is a model of the formpn(yjx;�) = nXi=1 p(C = ij�0) pi(yjC = i;x;�i)where � are the parameters, p(C = ij�0) is the mix-ture weight of the ith component, and pi(�j � � �) is theith component. For compactness, we will often writepn(�) for an n-component mixture model, pi(�) for acomponent model and �i for the ith component's mix-ture weight. Special cases of interest are (1) densityestimation, in which X is empty, (2) regression, inwhich Y is a single continuous-valued variable, and(3) classi�cation, in whichY is a single discrete-valuedvariable. All three of these cases are popular uses ofmixture modeling; our methods apply to each of thesecases. To simplify the presentation, we assume thatthe data used to train our model is complete data forX and Y (i.e. there is no missing data).Our approach is a staged approach to constructing amixture model. At each stage, we add a prespeci�edinitial component to our mixture model with a pre-speci�ed initial mixture weight, while �xing the pre-vious component structures, parameters, and relativemixture weights. We then use a structural expecta-tion maximization (SEM) method to modify the ini-tial component and initial mixture weight in the stagedmixture model. A SEM algorithm is an EM type algo-rithm in which one computes expected suÆcient statis-tics for potential component models and interleavesstructure and parameter search.SEM approaches have been applied to learning ofmixtures of Bayesian networks by Thiesson, Meek,Chickering, & Heckerman (1999), to mixtures of treesby Meil�a and Jordan (2000), and to the learning ofBayesian networks with missing data by Friedman(1997) who also coined the name.The concept of a (fractionally) weighted data set for aset of variables is central to the description of our ap-proach. A data set d = fz1; : : : ; zNg for a set of vari-ables Z = X[Y is a set of cases zi (i = 1; : : : ; N) wherezi is a value for Z. A weighted case wci = fzi; wig fora set of variables Z has a value zi for the variables Zand a real-valued weight wi. A weighted data set for

Z (denoted wd = fwc1; : : : ; wcNg) is a set of weightedcases for Z.In a traditional approach to learning a �nite mixturemodel, the E-step of the EM (or SEM) algorithm re-sults in n weighted data sets. If the training data set isd = fz1; : : : ; zNg then the The weighted data set wdiassociated with the ith component has weighted caseswcj = fzj ; p(C = ijzj ;�)g (j = 1; : : : ; N) where � arethe current parameters of the staged-mixture modeland p(C = ijzj ;�) is the membership probability forcase j in component i. We call the quantityPi wi thefractional count for component i.We now describe our algorithm. Its key component isthe procedure Add-Component that adds a new com-ponent to the current mixture model. The proceduretakes three arguments: an initial mixture weight �nfor the (new) nth component, an initial guess for thenth component pn(�), and the previous n � 1 compo-nent mixture model pn�1(�). The procedure makes useof two essential routines: (1) a fractional-data learn-ing method|a method that can be applied to weighteddata set forX;Y|that produces a probabilistic modelfor p(yjx) and (2) a model score method that evalu-ates the �t of a component model to a weighted dataset for X;Y. Note that many fractional-data learningmethods employ such a model score (e.g. maximumlikelihood, BIC and a Bayesian score).Add-component(�n; pn(�); pn�1(�))0 Let pn(�) = �npn(�) + (1� �n)pn�1(�)1 Do s1 steps of structure search- use pn to compute the weighted data set forthe nth component.- Use weighted data and fractional-datalearning method to learn new component p0n- if the model score for the new componentp0n on the weighted data does not improve overthe model score for the old component pn on thecomplete data then go to step 2.- Let pn(�) = �np0n(�) + (1� �n)pn�1(�)2 Do s2 steps of optimizing mixture weights- use pn to compute the fractional count forthe nth component.- Perform maximization step for mixtureweight to obtain �0n- let pn(�) = �0npn(�) + (1� �0n)pn�1(�)3 Repeat step 1 and step 2 s3 times.4 return pn(�)



In constructing a SMM, we iteratively apply the Add-Component procedure to previously constructed mix-ture models. We typically construct the �rst compo-nent by applying the fractional-data learning methodused in step 1 of the Add-Component procedure to theoriginal (equally weighted) data.We have found that a good initial model is a marginalmodel|one in which all variables are assumed to bemutually independent. For regression and classi�ca-tion, a marginal model is simply a univariate marginaldistribution of the target variable.The precise schedule of our SEM algorithm is de-�ned by the tuple (s1; s2; s3). Thiesson et al. (1999)have demonstrated that the performance of the learnedmodel is not very sensitive to the precise schedule foran SEM algorithm when applied to mixture modeling,whereas the schedule does a�ect the runtime of theprocedure. We provide additional experiments on al-ternative schedules in Section 4, and demonstrate thatextreme schedules (e.g.) s1 = s2 = s3 = 1 can performpoorly.It is interesting to consider the convergence propertiesof the Add-Component procedure. Because the EM al-gorithm is guaranteed to improve the likelihood at eachstep, if we do no structure search, the Add-Componentprocedure will improve the log-likelihood on the train-ing data. Similarly, Friedman (1997) showed that theSEM algorithm is guaranteed to improve the overallBayesian Information Criterion (BIC) if one uses BICto evaluate the �t of a model to the fractional dataduring model search. Thus, if we use BIC as a modelscore in step 1, we can guarantee that the result of theAdd-Component procedure will be a local maximumin terms of BIC, if we run to convergence.In addition, if we require that at each stage (i.e., ateach application of Add-Component) we only acceptthe addition of a component to our mixture model ifthe BIC score improves, we can guarantee that theSMM approach will identify a parameterized mixturemodel that is a local maximum in terms of BIC, if werun to convergence. However, it is unclear whether thismethod is the best method for choosing the number ofcomponents in a SMM. First, for mixture models ofthis type, it is unclear whether BIC is an appropri-ate score (Geiger, Heckerman, King, & Meek, 2000).Second, we have found that using BIC to select thenumber of components of a non-SMM mixture modeldoes not yield as good a predictive model as when thenumber is chosen with holdout data. In this paper, wedo not optimize the number of components. Instead,we show that, for the range of numbers of componentswe consider, our approach roughly monotonically im-proves performance on the test set as each component

is added.It is natural to consider variants of the staged mixturemodeling approach described above. A natural alter-native is to do some type of back�tting in which onedoes not �x the previous components and/or relativemixture weights. In our experiments, we consider twotypes of back�tting. One, we consider mixture-weightback�tting in which we relax the restriction of �xed rel-ative mixture weights. That is, after we have learnedand �xed the structure and parameters of each compo-nent, use the EM algorithm to estimate the maximumlikelihood estimates for all of the mixture weights.Two, we consider structure back�tting in which we usethe SEM algorithm in conjunction with fractionallyweighted data to relearn the structures, parameters,and mixture weights of all components. It is impor-tant to note that these alternative approaches typi-cally require more computation than does our SMMapproach. The additional computation required is es-pecially large in the case of structure back�tting.3 Relationship to BoostingIn this section, we compare and contrast our approachto constructing mixture models with boosting. Weshow that our approach to constructing mixture mod-els is qualitatively similar to boosting and distinguishour method from those of Friedman et al. (1998) andFriedman (1998).When adding the nth component to a mixture model,the weight of the ith case (xi;yi) when initially train-ing the nth component is its membership probabilityfor the case. Recall that we are given an initial mix-ture weight �n and an initial component pn(�) as wellas our previously constructed n�1 component mixturemodel pn�1(�). The mixture weight for case i ismw(i) = �npn(yijxi)�npn(yijxi) + (1� �n)pn�1(yijxi) :When using a maximum likelihood or BIC approachfor training, what is important in understanding thee�ect of reweighting the data is the relative size of themixture weights across cases. We consider two cases iand j, and simplify the analysis by assuming that eachinitial pn(yijxi) is a uniform distribution. (The anal-ysis of the relative mixture weights when non-uniforminitial components pn(�) are used is more complicatedbut qualitatively similar.) Under this assumption, theratio of the mixture weights for case i over case j isgiven bymw(i)mw(j) = �npn(�) + (1� �n)pn�1(yjjxj)�npn(�) + (1� �n)pn�1(yijxi) :



Consequently, if case j is better predicted than is case iby the n�1 component model, then the mixture weightratio is larger than one. Furthermore, the better casej is predicted, the larger the ratio. Thus, cases thatare poorly predicted by the n � 1 component modelare given relatively larger weights. Also, we can am-plify weight di�erences between cases by increasing theinitial mixture weight �n.We have demonstrated that our approach is qualita-tively similar to other approaches to boosting in thatwe more heavily weight cases that are poorly predictedby the previous ensemble of components. Now wecompare our approach to other boosting approachesto highlight signi�cant di�erences.In many approaches to boosting, including those ofFriedman et al. (1998) and Friedman (1999), the com-ponents of the ensemble are combined with both pos-itive and negative weights. In our approach, becausewe are constructing a mixture model using probabil-ities, only positive weights are used. Another signi�-cant di�erence between our approach and other boost-ing approaches is the form of the model. For instance,in the case of classi�cation, our probability estimateof a target class is a linear combination of the prob-ability estimates for the components. In the gradientboosting approach of Friedman (1999) and the Logit-Boost approach of Friedman et al. (1998) it is the logodds ratio that is a linear combination of the outputsof the components of the ensembles. Another distin-guishing feature of our approach is that, due to the useof EM, we can, at a given stage, iteratively reweigh thedata to optimize both the component structure param-eterization and mixture weight (i.e., we can set si tobe greater than 1). Other approaches such as Fried-man's, typically only perform a single line search toobtain the combination weight and do not reweigh thedata in the process of constructing the new compo-nent in the ensemble. In the next section, we demon-strate that departing from the boosting-like schedules1 = s2 = s3 = 1 typically improves the performanceof our approach.4 ExperimentsIn this section, we describe our experimental resultsof applying our staged mixture modeling approach todensity estimation and classi�cation problems.4.1 Data SetsIn our experiments, we use three groups of data sets:Digits, Speech, and UCI. The �rst two groups are usedto evaluate the performance of our staged mixturemodeling approach on the task of density estimation,

Group Name #Train #Test #VarsDigits Digit 0 1100 434 64Digit 1 1100 345 64Digit 2 1100 296 64Digit 3 1100 260 64Digit 4 1100 234 64Digit 5 1100 193 64Digit 6 1100 281 64Digit 7 1100 241 64Digit 8 1100 216 64Digit 9 1100 211 64Speech M54 1560 14 33M56 2336 52 33M64 1659 9 33M78 6294 73 33N86 8688 98 33N99 10127 227 33N146 4791 69 33N158 1796 21 33Z134 21888 4378 33Group Name #Train #Test #Vars #ClassesUCI Vowel 528 462 10 11Satimage 4435 2000 36 6Letter 16000 4000 16 26Table 1: Statistics of the data sets used in our experi-ments.and the third is used to evaluate the task of proba-bilistic classi�cation. Characteristics for the data setsare summarized in Table 1.The �rst group, Digits, are digital gray-scale im-ages of handwritten digits made available by the USPostal Service OÆce for Advanced Technology (Hin-ton, Dayan, & Revow, 1997). The second group ofdata sets, Speech, contains data sets for individualsub-phonetic events observed for 10ms time frames ofcontinuous speech (Huang et al., 1995). The thirdgroup, UCI, contains benchmark data sets from theUCI repository. We chose three data sets for thisgroup|Vowel, Satimage, and Letter|based on abil-ity to use the same training and test data as used inFriedman, Hastie, & Tibshirani (1998).4.2 ModelsIn our density estimation experiments, the componentmodels of our staged mixture models are Bayesian net-works in which each local distribution is a regressiontree. For our classi�cation experiments, our compo-nent models are single decision trees.As in the approaches of Friedman et al. (1998) andFriedman (1999), we restrict the maximum number ofleaves and use a maximum likelihood criterion whenconstructing our regression/decision trees. We use thestandard greedy search approach for construction ex-cept that, as described in Chickering et al. (2001),we consider seven split points for a continuous in-put/regressor variable, a choice that we have foundto be a good one over a wide variety of data sets. In



the case of density estimation, we enforce the acyclic-ity constraint of the Bayesian network at each stage ofthe construction (see Chickering, Heckerman, & Meek,1997). We choose the maximum number of leaves andour initial mixture weight (�n) using a 70/30 split ofthe training data. In our experiments, we use theBayesian information criterion (BIC) as our modelscore in step 1 and chose s1 = 5 and s2 = 5. Withrespect to the schedule parameter s3, we run untilconvergence or a maximum of 20 iterations (5 itera-tions for tuning experiments), whichever occurs �rst.We say that convergence is reached if the di�erence inthe log-likelihood of the model after step 1 and step3 divided by the di�erence in the log-likelihood of themodel after step 3 and the initial model falls below10�5.We compare our staged mixture models for density es-timation to a baseline model that is a single Bayesiannetwork in which each local distribution is regressiontree. Similarly, for classi�cation we compare with asingle decision tree. The baseline models are learnedas are the components of the SMM except that we donot restrict the maximum number of leaves and we usea Bayesian score to construct the tree. In our Bayesianscore, we use a non-informative prior distribution forthe parameters in all leaf distributions and a struc-ture prior proportional to �d where d is the numberof free parameters in the model. In a non-Bayesianfashion, we tune the parameter �, and the parame-ter 
|the minimum number of observations requiredfor a split|using a 70/30 split of the training data.For more details on the Bayesian score for regressiontrees, Meek, Chickering, & Heckerman (2002); and fordecision trees see Chickering et al. (1997).We measure the performance of structured mixturemodels and our baseline models with the followingmeasures. For Digits and Speech|our density estima-tion data sets|we measure the quality of learned mod-els by using the log-score on a test set T = (y1; : : : ;yN)of N cases:Score(T jmodel) = 1=N NXi=1 ln p(yijmodel):For the UCI data sets|our classi�cation regressiondata sets|we measure the log-score for target giveninput on a test set T = ((y1;x1); : : : ; (yN ;xN)):Score(T jmodel) = 1=N NXi=1 ln p(yijxi;model):We also evaluate the accuracy of our method as com-pared to the boosting method of Friedman et al. (1998)for the UCI data sets. We measure the classi�cation

accuracy:Acc(T jmodel) = 1=N NXi=1 �yi(argmaxy p(yjxi;model))where �yi(y) is 1 if yi = y and is 0 otherwise.4.3 ResultsThe log-scores of SMMs and baseline models are re-ported in Figure 1. Each graph depicts the results forone of the data sets. We only show three graphs forthe Digits data sets; for the digits \1", \2", and \3".These results are representative of all of the results onthe Digits data sets.The graphs demonstrate that the SMM approachyields models with good predictive performance. Thisis true for both density modeling tasks (Digits andSpeech data sets) as well as for classi�cation tasks(UCI data sets). In all but three cases, the SMMmodels obtain better log-scores than the baseline mod-els. For all but one of the data sets, we see that theSMM model achieves the same or better results thanthe baseline model. For all data sets, the SMM ap-proach rapidly improves on the initial single compo-nent model, although, as one would expect, the rate ofimprovement decreases as additional components areadded. The most extreme examples of this patternare found in the Digit data sets, where improvementis slow or non-existent after the addition of the secondcomponent.Our results on classi�cation accuracy are presented inTable 2. We present results for SMMs with 16 com-ponents and LogitBoost models with 200 components;the choice of 200 components yields the best perfor-mance for LogitBoost. The number of leaves used inthe decision trees for the components of the SMM isgiven in parentheses after the accuracy. Note thataccurate SMMs have far few components than accu-rate LogitBoost models. Although the SMM compo-nent models are more complicated than those for Log-itBoost models, we suspect that the di�erence is inpart due to the fact that we iteratively reweight thedata for a component to optimize the mixture weightand component (i.e. si > 1), whereas LogitBoost doesnot. Our results for classi�cation accuracy on the UCIdata sets are mixed. On Vowel, our method performsslightly better than either versions of LogitBoost; onSatimage and Letter, our method performs slightlyworse. We attribute this to several factors. First, themodel class used by LogitBoost is di�erent. Second,LogitBoost regularizes mixture weights as new com-ponents are added, whereas we are using maximumlikelihood to add new components.
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Figure 1: Log-scores on test sets for SMM with 1 to 16 components. Log-scores of the baseline models are shownas horizontal dotted lines.



Data set Baseline SMM 16 LB(2) 200 LB(8) 200Vowel 0.431 0.491 (16) 0.489 0.483Satimage 0.851 0.883 (128) 0.898 0.912Letter 0.863 0.906 (512) 0.855 0.967Table 2: Classi�cation accuracy for baseline model,SMM with 16 components, LogitBoost model with 200two-leaf components, and LogitBoost model with 200eight-leaf components.Next, let us examine the sensitivity of the results tovarious algorithm parameters. Experiments not re-ported here show that the quality of the learned mix-ture models is generally insensitive to variations in theschedule parameters s1; s2 and s3. Nonetheless, ex-treme values of these parameters can a�ect predictiveperformance and large values can signi�cantly increasethe runtime of the algorithm.Another parameter in the SMM approach is the initialmixture weight �n. The quality of the learned modelsmeasured in log-score is only moderately sensitive tothe choice of �n. Representative of all data sets wehave examined, Figure 2 plots the log-score on the testset as a function of �n and the number of componentsin the mixture for the UCI data set Satimage.
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Figure 2: Log-score as a function of initial mixtureweight for new component and the number of compo-nents in mixture.In addition, there are (at least) two natural candidatesfor an initial model: marginal (described above) anduniform. In experiments not reported here, we havefound that the accuracy of classi�cation is not sen-sitive to this choice, whereas the accuracy of densityestimation is better when marginal models are used.Now let us consider the back�tting alternatives de-scribed in Section 2; mixture-weight back�tting andstructure back�tting. The results on two represen-

tative data sets are given in Figure 3. Each plotrepresents the log-score as a function of number ofcomponents for SMM, mixture-weight back�tting, andstructure back�tting. For Letter, we see that struc-ture back�tting hurts performance and mixture-weightback�tting hurts performance to a lesser degree. Theresults for the Speech data set N146 are similar ex-cept that the structure back�tting not only hurts per-formance but additional components signi�cantly de-grade performance. The predictive performance ofback�tting methods on other data sets is roughlyevenly split between these two types of behaviors. Insmall number of experiments, we found mixture-weightback�tting adversely a�ected performance. In sum-mary, our staged mixture modeling approach can bothimprove predictive performance and reduce computa-tional cost.
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Figure 3: Performance of back�tting for mixture mod-els with 1 to 16 components for N146 (top) and Let-ter (bottom). Lines labeled with diamonds, squares,and triangles correspond to SMM (no back�tting),mixture-weight back�tting, and structure back�tting,respectively.Consider the plots in Figure 4. For the Letter andN146 data sets we plot the performance as a func-tion of number of components in the learned mixturemodel for four di�erent schedules. We use \SMM" todenote the schedule used in most of our experimentss1 = 5; s2 = 5; s3 = 20, \20-1-1" to denote the sched-ule s1 = 20; s2 = 1; s3 = 1 in which we perform 20



structural searches and one weight update, \1-20-1"to denote the schedule s1 = 1; s2 = 20; s3 = 1 in whichwe perform 1 structural search and 20 weight updates,and \1-1-1" to denote the schedule s1 = 1; s2 = 1; s3 =1. The plots in Figure 4 are representative of the per-formance of these schedules on the other data sets.In both plots the performance of the schedules \1-1-1"and \1-20-1" are worse than the schedules \SMM" and\20-1-1". This suggests that allowing additional stepsof structural search while adding new components isimportant for improveing performance.Finally, once again consider the plots in Figure 4. Inthese two plots we have plotted performance for mix-tures with 1 to 101 components learned alternativeschedules. For each of the schedules we note that theperformance does not systematically degrade as we in-crease the number of components in the mixture mod-els. This suggests that our SMM approach to con-structing mixture models is robust to over�tting.
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Figure 4: Log-score as a function of the number ofcomponents in the learned mixture for N146 (top) andLetter (bottom) using four di�erent learning schedules5 DiscussionWe described our staged mixture modeling approachand provided experimental evidence that it yields high-quality predictive models. We demonstrated that wecan improve the quality of both density and classi�ca-

tion models using this approach. One of the bene�tsof the SMM approach is that it can be used with anycomponent model that can be learned from fractionaldata unlike many other approaches to boosting.Our staged approach to building mixture models whenapplied to density estimation is similar to an approachto density estimation suggested by Li and Barron(2000). Li and Barron (2000) provide elegant theoret-ical results bounding the Kullback-Leibler divergencebetween a generative density and an approximate �-nite mixture density. They show that a iterative pro-cedure for the construction of a �nite mixture modelfor density estimation can achieve these bounds. Us-ing the nomenclature of our paper, they show thatusing a staged mixture modeling approach for densityestimation to construct a �nite mixture model withparametric components can be guaranteed to approachthe generative density. Their results and procedure,however, are limited to the case of density estimationwith �nite mixtures in which the component modelshave no structural component. It would be interest-ing to extend their theoretical results bounding theKullback-Leibler divergence to the case of regressionand classi�cation models and to the case in which thecomponents have a structural component.There are several areas for future research. First, itwould be useful to demonstrate that the approachyields improvements for other types of componentmodels such as logistic regressions or support vec-tor machines. Second, the SMM approach should becompared to methods for constructing mixture mod-els (other than the back�tting methods and alternativeschedules that we used for comparison). Finally, manyapproaches such as Friedman et al. (1998) regularizetheir components. It would be useful to experimentwith methods for regularizing the mixture weight aswell as parameter and structure learning of the com-ponents.References[Chickering et al., 1997] Chickering, D., Heckerman, D.,and Meek, C. (1997). A Bayesian approach to learningBayesian networks with local structure. In Proceedingsof Thirteenth Conference on Uncertainty in Arti�cial In-telligence, Providence, RI. Morgan Kaufmann.[Chickering et al., 2001] Chickering, D., Meek, C., andRounthwaite, R. (2001). EÆcient determination of dy-namic split points in a decision tree. In Proceedings ofthe 2001 IEEE International Conference on Data Min-ing, pages 91{98, San Jose, CA. IEEE Computer Society.[Freund and Schapire, 1997] Freund, Y. and Schapire, R.(1997). A decision-theoretic generalization of on-linelearning and application to boosting. Journal of Com-puter and System Sciences, 55(1):119{139.
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