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Abstract

We show that the only parameter prior for
complete Gaussian DAG models that satis-
fies global parameter independence, complete
model equivalence, and some weak regular-
ity assumptions, is the normal-Wishart dis-
tribution. Our analysis is based on the fol-
lowing new characterization of the Wishart
distribution: let W be an n × n, n ≥ 3,
positive-definite symmetric matrix of ran-
dom variables and f(W ) be a pdf of W .
Then, f(W ) is a Wishart distribution if and
only if W11 − W12W

−1
22 W ′

12 is independent
of {W12, W22} for every block partitioning
W11, W12, W

′
12, W22 of W . Similar character-

izations of the normal and normal-Wishart
distributions are provided as well. We also
show how to construct a prior for every DAG
model over X from the prior of a single re-
gression model.

1 Introduction

Directed Acyclic Graphical (DAG) models have in-
creasing number of applications in Statistics (Spiegel-
halter, Dawid, Lauritzen, and Cowell, 1993) as well as
in Decision Analysis and Artificial Intelligence (Heck-
erman, Mamdani, Wellman, 1995b; Howard and Math-
eson, 1981; Pearl, 1988). A DAG model m = (s,Fs)
for a set of variables X = {X1, . . . , Xn} each associ-
ated with a set of possible values Di, respectively, is a
set of joint probability distributions for D1 × · · · ×Dn
specified via two components: a structure s and a set
of local distribution families Fs. The structure s for
X is a directed graph with no directed cycles (i.e.,
a Directed Acyclic Graph) having for every variable
Xi in X a node labeled Xi with parents labeled by
Pam

i . The structure s represents the set of condi-
tional independence assertions, and only these condi-
tional independence assertions, which are implied by
a factorization of a joint distribution for X given by
p(x) =

∏n
i=1 p(xi|pam

i ), where x is a value for X (an
n-tuple) and xi is a value for Xi. When xi has no
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incoming arcs in m (no parents), p(xi|pam
i ) stands for

p(xi). The local distributions are the n conditional and
marginal probability distributions that constitute the
factorization of p(x). Each such distribution belongs
to the specified family of allowable probability distri-
butions Fs. A DAG model is often called a Bayesian
network, although the later name sometimes refers to
a specific joint probability distribution that factorizes
according to a DAG, and not, as we mean herein, a set
of joint distributions each factorizing acccording to the
same DAG. A DAG model is complete if it has no miss-
ing arcs. Note that any two complete DAG models for
X encode the same assertions of conditional indepen-
dence, namely none.

In this paper, we assume that each local distribution
is selected from a family Fs which depends on a finite
set of parameters θm ∈ Θm (a parametric family). The
parameters for a local distribution is a set of real num-
bers that completely determine the functional form of
p(xi|pam

i ) when xi has parents and of p(xi) when xi

has no parents. We denote by mh the model hypothe-
sis that the true joint probability distribution of X is
perfectly represented by a structure s of a DAG model
m with local distributions from Fs, namely, that the
joint probability distribution satisfies only the condi-
tional independence assertions implied by this factor-
ization and none other. Consequently, the true joint
distribution for a DAG model m is given by,

p(x|θm, mh) =

n
∏

i=1

p(xi|pam
i , θi, m

h) (1)

where y = {xi}Xi∈Y denotes a value of Y ⊆ X
and θ1, . . . θn are subsets of θm. Whereas in a gen-
eral formulation of DAG models, the subsets {θi}

n
i=1

could possibly ovelap allowing several local distribu-
tion to have common parameters, in this paper, we
shall shortly exclude this possibility (Assumption 5).
Note that θm denotes the union of θ1, . . . , θn for a DAG
model m.

We consider the Bayesian approach when the param-
eters θm and the model hypothesis mh are uncertain
but the parametric families are known. Given data
d = {x1, . . . ,xm}, a random sample from p(x|θm, mh)
where θm and mh are the true parameters and model
hypothesis, respectively, we can compute the posterior
probability of a model hypothesis mh using



p(mh|d) = c p(mh) p(d|mh) = (2)

c p(mh)

∫

p(d|θm, mh) p(θm|m
h) dθm

where c is a normalization constant. We can then se-
lect a DAG model that has a high posterior probability
or average several good models for prediction.

The problem of selecting an appropriate DAG model,
or sets of DAG models, given data, posses a serious
computational challenge, because the number of DAG
models grows faster than exponential in n. Meth-
ods for searching through the space of model struc-
tures are discussed (e.g.) by Cooper and Herskovits
(1992), Heckerman, Geiger, and Chickering (1995a),
and Friedman and Goldszmidt (1997).

From a statistical viewpoint, an important question
which needs to be addressed is how to specify the quan-
tities p(mh), p(d|θm, mh), p(θm|m

h), needed for evalu-
ating p(mh|d) for every DAG model m that could con-
ceivably be considered by a search algorithm. Buntine
(1991) and Heckerman et al. (1995a) discuss methods
for specifying the priors p(mh) via a small number of
direct assessments. Geiger and Heckerman (1994) and
Heckerman and Geiger (1995) develop practical meth-
ods for assigning parameter priors p(θm|m

h) to every
candidate DAG model m via a small number of direct
assessments. Another relevant paper is by Dawid and
Lauritzen (1993) who discuss the notion of hyper and
meta markov laws.

The contributions of this paper are twofold: A
methodology for specifying parameter priors for Gau-
sian DAG models using a prior for a single regression
model (Section 2). An analysis of complete Gaus-
sian DAG models which shows that the only parame-
ter prior that satisfies our assumptions is the normal-
Wishart distribution (Section 3).

The analysis is based on the following new character-
ization of the Wishart, normal, and normal-Wishart
distributions.

Theorem Let W be an n× n, n ≥ 3, positive-definite
symmetric matrix of real random variables such that
no entry in W is zero, µ be a an n-dimentional vector
of random variables, fW (W ) be a pdf of W , fµ(µ) be
a pdf of µ, and fµ,W (µ, W ) be a pdf of {µ, W}. Then,
fW (W ) is a Wishart distribution, fµ(µ) is a nor-
mal distribution, and fµ,W (µ, W ) is a normal-Wishart
distribution if and only if global parameter indepen-
dence holds for unknown W , unknown µ, or unknown
{µ, W}, respectively.

The assumption of global parameter independence is
expressed differently for each of the three cases treated
by this theorem and the proof follows from Theo-
rems 6, 8 and 9, respectively, proven in Section 3. It
should be noted that a single principle, global param-
eter independence, is used to characterizes three dif-
ferent distributions. In Section 4, we compare these
characterizations to a recent characterization of the
Dirichlet distribution (Geiger and Heckerman, 1997;
Járai , 1998) and conjecture that the later character-

ization uses a redundant assumption (local parame-
ter independence)—that is, global parameter indepen-
dence may also characterize the Dirichlet distribution.
The Dirichlet, normal, Wishart, and normal-Wishart
distributions are the conjugate distributions for the
standard multivariate exponential families.

2 Priors for DAG models

In this section we provide a novel presentation of
our previous results in (Geiger and Heckerman, 1994;
Heckerman and Geiger, 1995). We have sharpenned
the assumptions involved in learning DAG models with
no hidden variables from complete data. As a result,
we show that a prior for one regression model dictates,
under our assumptions, the prior for all Gaussian DAG
models over the same variables. Our new presenta-
tion, which uses matrix notation for expressing inde-
pendence of parameters of Gaussian DAG models, en-
ables us to prove the characterization theorems in the
next section.

This section is organized as follows: A methodology for
specifying parameter priors for many structures using
a few direct assessments (Section 2.1). A formula that
computes the marginal likelihood for every dag model
(Section 2.2). A specialization of this formula to an
efficient computation for Gaussian DAG models (Sec-
tion 2.3).

2.1 The Construction of Parameter Priors

We start by presenting a set of assumptions that sim-
plify the assessment of parameter priors and a method
of assessing these priors. The assumptions are as fol-
lows:

Assumption 1 (Complete model equivalence)
Let m1 = (s1,Fs1) be a complete DAG model for a
set of variables X. The family Fs2 of every complete
DAG model m2 = (s2,Fs2) for X is such that m1 and
m2 represent the same set of joint probability distribu-
tions.

We explain this assumption by providing an exam-
ple where it fails. Suppose the set of variables X =
{X1, X2, X3} consists of three variables each with pos-
sible values {xi, xi}, respectively, and s1 is the com-
plete structure with arcs X1 → X2, X1 → X3, and
X2 → X3. Suppose further, that the local distribu-
tions Fs1 of model m1 are restricted to the sigmoid
function

p(xi|pam
i , θi, m

h) =
1

1 + exp
{

ai +
∑

xj∈pam
i

bjixj

}

where θ1 = {a1}, θ2 = {a2, b12}, and θ3 =
{a3, b13, b23}.

Consider now a second complete model m2 for X =
{X1, X2, X3} whose structure consists of the arcs
X1 → X2, X1 → X3, and X3 → X2. Assumption 1
asserts that the families of local distributions for m1
and m2 are such that the set of joint distributions for
X represented by these two complete models is the
same. In this example, however, if we specify the local



families for m2 by also restricting them to be sigmoid
functions, the two models will represent different sets
of joint distributions over {X1, X2, X3}. Hence, As-
sumption 1 will be violated. Using Bayes rule one can
always determine a set of local distribution families
that will satisfy Assumption 1, however, their func-
tional form will usually involve an integral (and will
often violate Assumption 5 below). A notable excep-
tion is discussed in Section 2.3.

Our definition of mh, that the true joint pdf of a set
of variables X is perfectly represented by m, and As-
sumption 1, which says that two complete models rep-
resent the same set of joint pdfs for X, imply that
for two complete models mh

1 = mh
2 . This is a strong

assumption. It implies that p(θm2|m
h
2 ) = p(θm2|m

h
1 )

because two complete models represent the same set
of distributions. It also implies p(d|mh

1 ) = p(d|mh
2 )

which says that the marginal likelihood for two com-
plete DAG models is the same for every data set, or
equivalently, that complete DAG models cannot be
distinguished by data. Obviousely, in the example
with the sigmoid functions, the two models can be dis-
tinguished by data because they do not represent the
same set of joint distributions. 1

Assumption 2 (Regularity) For every two com-
plete DAG models m1 and m2 for X there exists a
one-to-one mapping f12 between the parameters θm1
of m1 and the parameters θm2 of m2 such that the
likelihoods satisfy p(x|θm1, m

h
1 ) = p(x|θm2, m

h
2 ) where

θm2 = f1,2(θm1). The Jacobian |∂θm1/∂θm2| exists
and is non-zero for all values of Θm1.

Assumption 2 implies p(θm2|m
h
1 ) =

∣

∣

∣

∂θm1

∂θm2

∣

∣

∣
p(θm1|m

h
1 )

where θm2 = f1,2(θm1). Furthermore, due to Assump-
tion 1, p(θm2|m

h
2 ) = p(θm2|m

h
1 ), and thus

p(θm2|m
h
2 ) =

∣

∣

∣

∣

∂θm1

∂θm2

∣

∣

∣

∣

p(θm1|m
h
1 ). (3)

Assumption 3 (Likelihood Modularity) For ev-
ery two DAG models m1 and m2 for X such that Xi
has the same parents in m1 and m2, the local distri-
butions for xi in both models are the same, namely,
p(xi|pam

i , θi, m
h
1) = p(xi|pam

i , θi, m
h
2 ) for all Xi ∈ X.

1A technical point worth mentioning here is our use of
the term variable and its relationship to the standard defi-
nition of a random variable. A continuous random variable

X, according to most probability text books, is a function
X : Ω → R such that {w|X(w) ≤ x} ∈ A where A is a σ-
field of subsets of Ω and Ω is a sample space of a probability
space (Ω,A, P ) and where P is a fixed probability measure.
A discrete random variable is a function X : Ω → D where
D is a discrete set such that {w|X(w) = xi} ∈ A for every
xi ∈ D where A is a σ-field and Ω is a sample space of
a probability space (Ω,A, P ). We use the term variable,
as common to much of the literature on DAG models, to
mean a function Xi : A → Di, where A is a σ-field of
subsets of Ω, parallel to the usual definition of a random
variable, but without fixing a specific probability measure
P . A model m for a set of variables X, (and a DAG model
in particular), is simply a set of probability measures on
the Cartesian product ×iDi. Once a particular probability
measure from m is picked, a variable in our sense becomes
a random variable in the usual sense.

Assumption 4 (Prior Modularity) For every two
DAG models m1 and m2 for X such that Xi has the
same parents in m1 and m2, p(θi|m

h
1 ) = p(θi|m

h
2 ).

Assumption 5 (Global Parameter Independence)
For every DAG model m for X, p(θm|m

h) =
∏n

i=1 p(θi|m
h).

The likelihood and prior modularity assumptions have
been used implicitly in the work of (e.g.) Cooper and
Herskovits (1992), Spiegelhalter et al. (1993), and
Buntine (1994). Heckerman et al. (1995a) made As-
sumption 4 explicit in the context of discrete variables
under the name parameter modularity. Spiegelhalter
and Lauritzen (1990) introduced Assumption 5 in the
context of DAG models under the name global inde-
pendence. Assumption 5 excludes the possibility that
two local distributions would share a common param-
eter.

The assumptions we have made lead to the following
significant implication: When we specify a parameter
prior p(θmc|m

h
c ) for one complete DAG model mc, we

also implicitly specify a prior p(θm|m
h) for any DAG

model m among the super exponentially many possi-
ble DAG models. Consequently, we have a framework
in which a manageable number of direct assessments
leads to all the priors needed to search the model space.
In the rest of this section, we explicate how all param-
eter priors are determined by the one elicited prior. In
Section 2.3, we show how to elicit the one needed prior
p(θmc|m

h
c ) under specific distributional assumptions.

Due to the complete model equivalence and regular-
ity assumptions, we can compute p(θmc|m

h
c ) for one

complete model for X from the prior of another com-
plete model for X. In so doing, we are merely perform-
ing coordinate transformations between parameters for
different variable orderings in the factorization of the
joint likelihood (Eq. 3). Thus by specifying parame-
ter prior for one complete model, we have implicitly
specified a prior for every complete model.

It remains to examine how the prior p(θm|m
h) is com-

puted for an incomplete DAG model m for X. Due to
global parameter independence we have p(θm|m

h) =
∏n

i=1 p(θi|m
h) and therefore it suffices to examine each

of the n terms separately. To compute p(θi|m
h),

we identify a complete DAG model mci such that
Pam

i = Pamci

i . The prior p(θmci|m
h
ci) is obtained

from p(θmc|m
h
c ), as we have shown for every pair of

complete DAG models. Now, global parameter in-
dependence states that p(θmc|m

h
ci) can be written as

a product
∏n

i=1 p(θi|m
h
ci), and therefore, p(θi|m

h
ci) is

available. Finally, due to prior modularity p(θi|m
h) is

equal to p(θi|m
h
ci).

The following theorem summarizes this discussion.

Theorem 1 Given Assumptions 1 through 5, the pa-
rameter prior p(θm|m

h) for every DAG model m is
determined by a specified parameter prior p(θmc|m

h
c )

for an arbitrary complete DAG model mc.

Theorem 1 shows that once we specify the parameter
prior for one complete DAG model all other priors can



be generated automatically and need not be specified
manually. Consequently, together with Eq. 2 and due
to the fact that also likelihoods can be generated au-
tomatically in a similar fashion, we have a manageable
methodology to automate the computation of p(d|mh)
for any DAG model of X which is being considered by a
search algorithm as a candidate model. Next we show
how this computation can be done implicitly without
actually computing the priors and likelihoods.

2.2 Computation of the Marginal Likelihood
for Complete Data

For a given X, consider a DAG model m and a com-
plete random sample d. Assuming global parameter in-
dependence, the parameters remain independent given
complete data. That is,

p(θm|d, mh) =

n
∏

i=1

p(θi|d, mh) (4)

In addition, assuming global parameter independence,
likelihood modularity, and prior modularity, the pa-
rameters remain modular given complete data. In par-
ticular, if Xi has the same parents in s1 and s2, then

p(θi|d, mh
1 ) = p(θi|d, mh

2 ) (5)

Also, for any Y ⊆ X, define dY to be the random
sample d restricted to observations of Y. For ex-
ample, if X = {X1, X2, X3}, Y = {X1, X2}, and
d = {x1 = {x11, x12, x13},x2 = {x21, x22, x23}}, then
we have dY = {{x11, x12}, {x21, x22}}. Let Y be a
subset of X, and sc be a complete structure for any
ordering where the variables in Y come first. Then, as-
suming global parameter independence and likelihood
modularity, it is not difficult to show that

p(Y|d, mh
c ) = p(Y|dY, mh

c ) (6)

Given these observations, we can compute the
marginal likelihood as follows.

Theorem 2 Given any complete DAG model mc for
X, any DAG model m for X, and any complete ran-
dom sample d, Assumptions 1 through 5 imply

p(d|mh) =

n
∏

i=1

p(dPai∪{Xi}|mh
c )

p(dPai |mh
c )

(7)

Proof: From the rules of probability, we have

p(d|mh) =
m
∏

l=1

∫

p(xl|θm, mh) p(θm|dl, m
h) dθm (8)

where dl = {x1, . . . ,xl−1}. Using Equations 1 and 4
to rewrite the first and second terms in the integral,
respectively, we obtain

p(d|mh) =

m
∏

l=1

∫ n
∏

i=1

p(xil|pail, θi, m
h) p(θi|dl, m

h) dθm

where xil is the value of Xi in the l-th data point.

Using likelihood modularity and Equation 5, we get

p(d|mh) =

m
∏

l=1

∫ n
∏

i=1

p(xil|pail, θi, m
h
ci) p(θi|dl, m

h
ci) dθm

(9)

where sci is a complete structure with variable order-
ing Pai, Xi followed by the remaining variables. De-
composing the integral over θm into integrals over the
individual parameter sets θi, and performing the inte-
grations, we have

p(d|mh) =

m
∏

l=1

n
∏

i=1

p(xil|pail, dl, m
h
ci)

Using Equation 6, we obtain

p(d|mh) =

m
∏

l=1

n
∏

i=1

p(xil,pail|dl, m
h
ci)

p(pail|dl, mh
ci)

=

m
∏

l=1

n
∏

i=1

p(xil,pail|d
Pai∪{Xi}
l , mh

ci)

p(pail|d
Pai

l , mh
ci)

=
n

∏

i=1

p(dPai∪{Xi}|mh
ci)

p(dPai |mh
ci)

(10)

By the likelihood modularity, complete model equiv-
alence, and regularity assumptions, we have that
p(d|mh

ci) = p(d|mh
c ), i = 1, . . . , n. Consequently, for

any subset Y of X, we obtain p(dY|mh
ci) = p(dY|mh

c )
by summing over the variables in dX\Y. Consequently,
using Equation 10, we get Equation 7. 2

An important feature of the formula for marginal likeli-
hood (Equation 7), which we now demonstrate, is that
two DAG models that represent the same assertions
of conditional independence have the same marginal
likelihood. We say that two structures for X are in-
dependence equivalent if they represent the same as-
sertions of conditional independence. Independence
equivalence is an equivalence relation, and induces a
set of equivalence classes over the possible structures
for X.

Verma and Pearl (1990) provide a simple characteri-
zation of independence-equivalent structures using the
concept of a v-structure. Given a structure s, a v-
structure in s is an ordered node triple (Xi, Xj, Xk)
where s contains the arcs Xi → Xj and Xj ← Xk, and
there is no arc between Xi and Xk in either direction.
Verma and Pearl show that two structures for X are
independence equivalent if and only if they have identi-
cal edges and identical v-structures. This characteriza-
tion makes it easy to identify independence equivalent
structures.

An alternative characterization by Chickering (1995) is
useful for proving our claim that independence equiva-
lent structures have the same marginal likelihood. An
arc reversal is a transformation from one structure to



another, in which a single arc between two nodes is re-
versed. An arc between two nodes is said to be covered
if those two nodes would have the same parents if the
arc were removed.

Theorem 3 (Chickering, 1995)
Two structures for X are independence equivalent if
and only if there exists a set of covered arc reversals
that transform one structure into the other.

A proof of this theorem can also be found in (Hecker-
man et al., 1995a). We are ready to prove our claim.

Theorem 4 Given Assumptions 1 through 5, every
two independence equivalent DAG models have the
same marginal likelihood.

Proof: Theorem 3 implies that we can restrict the
proof to two DAG models that differ by a single cov-
ered arc. Say the arc is between Xi and Xj and that
the joint parents of Xi and Xj are denoted by π. For
these two models, Equation 7 differs only in terms i
and j. For both models the product of these terms is
p(dπ∪{Xi,Xj}|mh

c )/p(dπ|mh
c ). 2

The conclusions of Theorems 2 and 4 are not justified
when our assumptions are violated. In the example of
the sigmoid functions, discussed in the previous sub-
section, the structures s1 and s2 differ by the reversal
of a covered arc between X2 and X3, but, given that all
local distribution families are sigmoid, there are cer-
tain joint likelihoods that can be represented by one
structure, but not the other, and so their marginal
likelihood is different.

2.3 Gaussian Directed Acyclic Graphical
Models

We now apply the methodology of previous sections to
Gaussian DAG models. A Gaussian DAG model is a
DAG model as defined by Eq 1, where each variable
Xi ∈ X is continuous, and each local likelihood is the
linear regression model

p(xi|pai, θi, m
h) = N(xi|mi +

∑

xj∈pai

bjixj , 1/vi) (11)

where N(xi|µ, τ) is a normal distribution with mean
µ and precision τ > 0. Given this form, a missing
arc from Xj to Xi implies that bji = 0 in the com-
plete DAG model. The local parameters are given
by θi = (mi, bi, vi), where bi is the column vector
(b1i, . . . , bi−1,i).

For Gaussian DAG models, the joint likelihood
p(x|θm, mh) obtained from Eqs 1 and 11 is an n-
dimensional multivariate normal distribution with
mean µ and symmetric positive definite precision ma-
trix W ,

p(x|θm, mh) =

n
∏

i=1

p(xi|pam
i , θi, m

h) = N(x|µ, W ).

For a complete model mc with ordering (X1, . . . , Xn)
there is a one-to-one mapping between θmc =

⋃n
i=1 θi

where θi = (mi, bi, vi) and {µ, W} which has a
nowhere singular Jacobian matrix. Consequently, as-
signing a prior for the parameters of one complete
model induces a parameter prior, via the change of
variables formula, for {µ, W} and in turn, induces a
parameter prior for every complete model. Any such
induced parameter prior must satisfy, according to
our assumptions, global parameter independence. Not
many prior distributions satisfy such a requirement. In
fact, in the next section we show that the parameter
prior p(µ, W |mh

c ) must be a normal-Wishart distribu-
tion.

For now we proceed by simply choosing p(µ, W |mh
c )

to be a normal-Wishart distribution. In particular,
p(µ|W, mh

c ) is a multivariate-normal distribution with
mean ν and precision matrix αµW (αµ > 0); and
p(W |mh

c ) is a Wishart distribution, given by,

p(W |mh
c ) = c(n, α)|T |α/2|W |(α−n−1)/2e−1/2tr{TW}

(12)
with α degrees of freedom (α > n− 1) and a positive-
definite parametric matrix T and where c(n, α) is a
normalization constant given by

c(n, α) =

[

2αn/2πn(n−1)/4
n

∏

i=1

Γ

(

α + 1− i

2

)

]−1

(13)
(e.g., DeGroot, 1970, p. 57).

This choise satisfies global parameter independence
due to the following well known theorem.

Define a block partitioning {W11, W12, W
′
12, W22} of an

n by n matrix W to be compatible with a partitioning
µ1, µ2 of an n dimensional vector µ, if the indices of the
rows that correspond to block W11 are the same as the
indices of the terms that constitute µ1 and similarly
for W22 and µ2.

Theorem 5 If f(µ, W ) is an n dimensional normal-
Wishart distribution, n ≥ 2, with parameters ν, αµ,

α, and T , then {µ1, W11 −W12W
−1
22 W ′

12} is indepen-
dent of {µ2 − W−1

22 W ′
12µ1, W12, W22} for every par-

titioning µ1, µ2 of µ where W11,W12, W ′
12, W22 is

a block partitioning of W compatible with the parti-
tioning µ1, µ2. Furthermore, the pdf of {µ1, W11 −
W12W

−1
22 W ′

12} is normal-Wishart with parameters ν1,

αµ, T11−T12T
−1
22 T ′

12, and α−n+ l where T11,T12, T ′
12,

T22 is a compatible block partitioning of T , ν1, ν2 is a
compatible partitioning of ν, and l is the size of the
vector ν1.

The proof of Theorem 5 requires a change of variables
from (µ, W ) to (µ1, µ2 − W−1

22 W ′
12µ1) and (W11 −

W12W
−1
22 W ′

12, W12, W22). Press carries out these com-
putations for the Wishart distribution (1971, p. 117-
119). Standard changes are needed to obtain the claim
for the normal-Wishart distribution.

To see why the independence conditions in Theo-
rem 5 imply global parameter independence, con-
sider the partitioning in which the first block con-
tains the first n − 1 coordinates which correspond to
X1, . . . , Xn−1 while the second block contains the last



coordinate which corresponds to Xn. For this par-
titioning, bn = −W−1

22 W ′
12, vn = W−1

22 , and mn =

µ2−W−1
22 W ′

12µ1. Furthermore, ((W−1)11)
−1 = W11−

W12W
−1
22 W ′

12 is the precision matrix associated with
X1, . . . , Xn−1. Consequently, {mn, bn, vn} is indepen-
dent of {µ1, ((W

−1)11)
−1}. We now recursively re-

peat this argument with {µ1, ((W
−1)11)

−1} instead
of {µ, W}, to obtain global parameter independence.
The converse, namely that global parameter indepen-
dence implies the independence conditions in Theo-
rem 5, is established similarly.

Our choise of prior implies that the posterior
p(µ, W |d, mh

c ) is also a normal-Wishart distribution
(DeGroot, 1970, p. 178). In particular, p(µ|W, d, mh

c )
is multivariate normal with mean vector ν′ given by

ν′ =
αµν + mxm

αµ + m
(14)

and precision matrix (αµ + m)W , where xm is the
sample mean of d, and p(W |d, mh

c ) is a Wishart distri-
bution with α + m degrees of freedom and parametric
matrix R given by

R = T + Sm +
αµm

αµ + m
(ν − xm)(ν − xm)′ (15)

where Sm =
∑m

i=1(xi − xm)(xi − xm)′. From these
equations, we see that αµ and α can be thought of as
equivalent sample sizes for µ and W , respectively.

According to Theorem 5, if p(µ, W |mh
c ) is a normal-

Wishart distribution with the parameters given by
the theorem, then p(µY, ((W−1)YY)−1|mh

c ) is also a
normal–Wishart distribution with parameters νY, αµ,
TY = ((T−1)YY)−1 and α′ = α − n + l, where Y is
a subset of l coordinates. Thus, applying standard
formulas pertaining to t-distributions (e.g., DeGroot,
1970, p. 179-180), we obtain the terms in Equation 7:

p(dY|mh
c ) = (2π)−lm/2· (16)

(

αµ

αµ + m

)l/2
c(l, α′)

c(l, α′ + m)
|TY|

α′

2 |RY|
−α′+m

2

where RY = ((R−1)YY)−1 is the posterior parametric
matrix restricted to the Y coordinates.

We have just shown how to compute the marginal
likelihood for Gaussian DAG models given the direct
assessment of a parameter prior p(µ, W |mh

c ) for one
complete model. The task of assessing a parame-
ter prior for one complete Gaussian DAG model is
equivalent, in general, to assessing priors for the pa-
rameters of a set of n linear regression models (due
to Equation 11). However, to satisfy global param-
eter independence, the prior for the linear regression
model for Xn given X1, . . . , Xn−1 determines the pri-
ors for the linear coefficients and variances in all the
linear regression models that define a complete Gaus-
sian model. In particular, 1/vn has a one dimensional
Wishart pdf W (1/vn | α + n − 1, T22 − T ′

12T
−1
11 T12)

(i.e., a gamma distribution), and bn has a normal pdf

N(bn | T
−1
11 T12, T22/vn). Consequently, the degrees of

freedom α and the parametric matrix T , which com-
pletely specify the Wishart prior distribution, are de-
termined by the normal-gamma prior for one regres-
sion model. Kadane et al. (1980) address in detail the
assessment of such a normal-gamma prior for a lin-
ear regression model and their method applies herein
with no needed changes. The relationships between
this elicited prior and the priors for the other n − 1
linear regression models can be used to check consis-
tency of the elicited prior. Finally, a normal prior for
the means of X1, . . . , Xn is assessed separately and it
requires only the assessment of a vector of means along
with an equivalent sample size αµ.

Our method for constructing parameter priors for
many DAG models from a prior for one regression
model has recently been applied to analyses of data
in the domain of image compression (Thiesson et al.,
1998). Our method also provides a suitable Bayesian
alternative for many of the examples discussed in
(Spirtes et al., 1993).

3 Characterization of Several
Probability Distributions

We now characterize the Wishart distribution as the
only pdf that satisfies global parameter independence
for an unknown precision matrix W with n ≥ 3 co-
ordinates (Theorem 6). This theorem is phrased and
proven in a terminology that relates to known facts
about the Wishart distribution. We proceed with
similar characterizations of the normal and normal-
Wishart distributions (Theorems 8 and 9).

Theorem 6 Let W be an n × n, n ≥ 3, positive-
definite symmetric matrix of random variables and
f(W ) be a pdf of W . Then, f(W ) is a Wishart dis-
tribution if and only if W11 − W12W

−1
22 W ′

12 is in-
dependent of {W12, W22} for every block partitioning
W11, W12, W

′
12, W22 of W .

Proof: That W11 − W12W
−1
22 W ′

12 is independent of
{W12, W22} whenever f(W ) is a Wishart distribution
is a well known fact (Press 1971, p. 117-119). It is also
expressed by Theorem 5. The other direction is proven
by induction on n. The base case n = 3 is treated at
the end.

The pdf of W can be written in n! orderings. In par-
ticular, due to the assumed independence conditions,
we have the following equality:

f(W ) = f1(W11 − W12W
−1
22 W ′

12)f2|1(W22, W12)

= f2(W22 − W ′
12W

−1
11 W12)f1|2(W11, W12) (17)

where a subscripted f denotes a pdf. Since n > 3, we
can divide the indices of W into three non-empty sets
a, b and c such that b includes at least two indices. We
now group a and b to form a block and b and c to form
a block. For each of the two cases, let W11 be the block
consisting of the indices in {a, b} or {b, c}, respectively,
and W22 be the block consisting of the indices of c or
a, respectively. By the induction hypothesis, and since
the independence conditions on W can be shown to
hold for any block W11 of W , we conclude that f1(V )



is a Wishart distribution W (V | α1, T1) and f2(V ) is a
Wishart distribution W (V | α2, T2). Consequently, the
pdf of the block corresponding to the indices in b is
a Wishart distribution, and from the two alternative
ways by which this pdf can be formed, it follows that
α1 − l1 = α2 − l2, where li is the number of indices in
block i (Press, 1971, Theorem 5.1.4). Thus,

c1|W11.2|
βetr{T1W11.2}f2|1(W22, W12) =

c2|W22.1|
βetr{T2W22.1}f1|2(W11, W12) (18)

where c1 and c2 are normalizing constants, β = (α1 −
l1 − 1)/2, W11.2 = W11 −W12W

−1
22 W ′

12, and W22.1 =

W22 −W ′
12W

−1
11 W12. Define

F2|1(W22, W12) = (19)

c1f2|1(W22, W12)/|W22|
βetr{T2W22+T1(W12W

−1

22
W ′

12
)}

F1|2(W11, W12) = (20)

c2f1|2(W11, W12)/|W11|
βetr{T1W11+T2(W ′

12
W

−1

11
W12)},

substitute into Equation 18, and obtain, using |W11−
W12W

−1
22 W ′

12||W22| = |W |, that F2|1(W22, W12) =
F1|2(W11, W12). Consequently, F2|1 and F1|2 are
functions only of W12 and thus, using Equation 19,
we obtain

f(W ) = |W |βetr{T1W11+T2W22}H(W12) (21)

for some function H .

To show that f(W ) is Wishart we must find the form
of H . Considering the three possible pairs of blocks
formed with the sets of indices a, b, and c, Equation 21
can be rewritten as follows.

f(W ) = |W |β1etr{TaaWaa+TbbWbb+TccWcc}· (22)

e2tr{T ′

abWab+T ′

acWac+T ′

bcWbc}H1(Wac, Wbc)

f(W ) = |W |β2etr{SaaWaa+SbbWbb+SccWcc}· (23)

e2tr{S′

abWab+S′

acWac+S′

bcWbc}H2(Wab, Wbc)

f(W ) = |W |β3etr{RaaWaa+RbbRbb+TccWcc}· (24)

e2tr{R′

abWab+R′

acWac+R′

bcWbc}H3(Wab, Wac)

By setting Wab = Wac = Wbc = 0, we get β1 = β2 =
β3 and Tii = Sii = Rii, for i = a, b, c. By comparing
Equations 22 and 23 we obtain

e2tr{(T ′

ac−S′

ac)Wac}H1(Wac, Wbc) = (25)

e2tr{(S′

ab−T ′

ab)Wab+(S′

bc−T ′

bc)Wbc}H2(Wab, Wbc)

Each side of this equation must be a function only of
Wbc. We denote this function by H12. Hence,

H1(Wac, Wbc) = H12(Wbc)e
2tr{(S′

ac−T ′

ac)Wac}

and by symmetric arguments, comparing Equations 22
and 24,

H1(Wac, Wbc) = H13(Wac)e
2tr{(R′

bc−T ′

bc)Wbc}

Thus, H12(Wbc) is proportional to e2tr{(R′

bc−T ′

bc)Wbc}

and so f(W ) is a Wishart distribution, as claimed.

It remains to examine the case n = 3. We first assume
n = 2 in which case f(W ) is not necessarily a Wishart
distribution. In the full version of this paper (Sub-
mitted to Annals of Statistics) we show that given the
independence conditions for two coordinates, f must
have the form

f(W ) = c|W |βetr{TW}H(W12) (26)

where H is an arbitrary function, and that the
marginal distributions of W11 and W22 are one dimen-
sional Wishart distributions. The proof rests on tech-
niques from the theory of functional equations (Aczél ,
1966) and results from (Járai , 1986, 1998). A weaker
proof, under some regularity conditions, can be found
in (Geiger and Heckerman, 1998).

We now treat the case n = 3 using these assertions
about the case n = 2. Starting with Equation 17,
and proceeding with blocks a, b, c each containing ex-
actly one coordinate, we get, due to the given inde-
pendence conditions for two coordinates, that f1 has
the form given by Equation 26, and that f2 is a one
dimensional Wishart distribution. Proceeding parallel
to Equations 18 through 20, we obtain,

H(a12 − b2
1b

2
2/W22)F2|1(W22, W12) = F1|2(W11, W12)

(27)
where (b1, b2) is the matrix W12, a12 is the off-diagonal
element of W11, a12− b2

1b
2
2/W22 is the off diagonal ele-

ment of W11−W12W
−1
22 W ′

12, and W22 is a 1×1 matrix.
Note that the right hand side depends on W11 only
through a12. Let b1 and b2 be fixed, y = b2

1b
2
2/W22,

and x = a12. Also let F (t) = F2|1(b
2
1b

2
2/t, (b1, b2))

and G(a12) = F1|2(W11, (b1, b2)). We can now rewrite
Equation 27 as H(x − y)F (y) = G(x). Now set
z = x− y, and obtain for every y, z > 0

H(z)F (y) = G(y + z) (28)

the only measurable solution of which for H is H(z) =
cebz (e.g., Aczél , 1966) .

Substituting this form of H into Equation 26, we see
that W11 has a two dimensional Wishart distribution.
Recall that W22 has a one dimensional Wishart distri-
bution. We can now apply the induction step starting
form Equation 18 and prove the Theorem for n = 3.
2

We now treat the situation when only the means are
unknown, characterizing the normal distribution. The
two dimensional case turns out to be covered by the
Skitovich-Darmois theorem (e.g., Kagan, Linnik, and
Rao (1973)).

Theorem 7 (Skitovich-Darmois) Let z1, . . . , zk be
independent random variables and αi, βi, 1 < i < k,



be constant coefficients. If L1 =
∑

αizi is independent
of L2 =

∑

βizi, then each zi for which αiβi 6= 0 is
normal.

The Skitovich-Darmois theorem is used in the proof
of the base case of our next characterization. Several
generalizations of the Skitovich-Darmois theorem are
described in Kagan et al. (1973).

Theorem 8 Let W be an n × n, n ≥ 2, positive-
definite symmetric matrix of real random variables
such that no entry in W is zero, µ be an n-dimensional
vector of random variables, and f(µ) be a pdf of µ.
Then, f(µ) is an n dimensional normal distribution
N(µ|η, γW ) where γ > 0 if and only if µ1 is indepen-
dent of µ2 + W−1

22 W ′
12µ1 for every partitioning µ1, µ2

of µ where W11,W12, W ′
12, W22 is a block partitioning

of W compatible with the partitioning µ1, µ2.

Proof: The two independence conditions, µ1 inde-
pendent of µ2 + W−1

22 W ′
12µ1 and µ2 independent of

µ1 + W−1
11 W12µ2, are equivalent to the following func-

tional equation

f(µ) = f1(µ1)f2|1(µ2 + W−1
22 W ′

12µ1) (29)

= f2(µ2)f1|2(µ1 + W−1
11 W12µ2)

where a subscripted f denotes a pdf. We show that
the only solution for f that satisfies this equation is
the normal distribution. Consequently both the if and
only if portions of the theorem will be established.

For n ≥ 3, we can divide the indices of W into three
non-empty sets a, b and c. We group a and b to form
a block and b and c to form a block. For each of the
two cases, let W11 be the block consisting of the in-
dices in {a, b} or {b, c}, respectively, and W22 be the
block consisting of the indices of c or a, respectively.
By the induction hypothesis applied to both cases
and marginalization we can assume that f1(µ1) is a
normal distribution N(µ1|η1, γ1(W

−1)11)
−1) and that

f2(µ2) = N(µ2|η2, γ2(W
−1)22)

−1). Consequently, the
pdf of the block corresponding to the indices in b is
a normal distribution, and from the two alternative
ways by which this pdf can be formed, it follows that
γ1 = γ2.

Let γ = γi, i = 1, 2, and define

F2|1(x) = f2|1(x)/N(x|η2 + W−1
22 W ′

12η1, γW22)

F1|2(x) = f1|2(x)/N(x|η1 + W−1
11 W12η2, γW11).

By substituting these definitions into Equation 29,
substituting the normal form for f1(µ1) and f2(µ2),
and canceling on both sides of the equation the term
N(µ|η, γW ) (which is formed by standard algebra per-
taining to quadratic forms (E.g., DeGroot, pp. 55)),
we obtain a new functional equation,

F2|1(µ2 + W−1
22 W ′

12µ1) = F1|2(µ1 + W−1
11 W12µ2).

By setting µ2 = −W−1
22 W ′

12µ1, we obtain F1|2((I −

(W−1
11 W12)(W

−1
22 W ′

12))µ1) = F2|1(0) for every µ1.
Hence, the only solution to this functional equation

is F1|2 = F2|1 ≡ constant. Consequently, f(µ) =
N(µ|η, γW ).

It remains to prove the theorem for n = 2. Let
z1 = µ1, z2 = µ2 + w−1

22 w12µ1, L1 = µ1 + w−1
11 w12µ2,

and L2 = µ2. By our assumptions z1 and z2 are in-
dependent and L1 and L2 are independent. Further-
more, rewriting L1 and L2 in terms of z1 and z2, we
get, L1 = w−1

11 w−1
22 (w11w22 − w2

12)z1 + w−1
11 w12z2 and

L2 = z2 − w−1
22 w12z1. All linear coefficients in this

transformation are non zero due to the fact that W
is positive definite and that w12 is not zero. Conse-
quently, due to the Skitovich-Darmois theorem, z1 is
normal and z2 is normal. Furthermore, since z1 and
z2 are independent, their joint pdf is normal as well.
Finally, {µ1, µ2} and {z1, z2} are related through a
non-singular linear transformation and so {µ1, µ2} also
have a joint normal distribution f(µ) = N(µ|η, A)
where A = (aij) is a 2 × 2 precision matrix. Sub-
stituting this solution into Equation 29 and compar-
ing the coefficients of µ2

1, µ2
2, and µ1µ2, we obtain

a12/a11 = w12/w11 and a12/a22 = w12/w22. Thus
A = γW where γ > 0. 2

The proofs of Theorems 6 and 8 can be combined
to form the following characterization of the normal-
Wishart distribution.

Theorem 9 Let W be an n × n, n ≥ 3, positive-
definite symmetric matrix of real random variables
such that no entry in W is zero, µ be an n-
dimensional vector of random variables, and f(µ, W )
be a joint pdf of {µ, W}. Then, f(µ, W ) is an n
dimensional normal-Wishart distribution if and only
if {µ1, W11 −W12W

−1
22 W ′

12} is independent of {µ2 +

W−1
22 W ′

12µ1, W12, W22} for every partitioning µ1, µ2 of
µ where W11,W12, W ′

12, W22 is a block partitioning of
W compatible the partitioning µ1, µ2.

Proof: The two independence conditions, {µ1, W11 −
W12W

−1
22 W ′

12} independent of {µ2 + W−1
22 W ′

12µ1,

W12, W22} and {µ2, W22−W ′
12W

−1
11 W12} independent

of {µ1 + W−1
11 W12µ2, W ′

12, W11}, are equivalent to the
following functional equation

f(µ, W ) = f1(µ1, W11.2)f2|1(µ2 + W−1
22 W ′

12µ1, W22, W12)

= f2(µ2, W22.1)f1|2(µ1 + W−1
11 W12µ2, W11, W12)

where a subscripted f denotes a pdf. We show that
the only solution for f that satisfies this functional
equation is the normal-Wishart distribution. Setting
W to a fixed value yields Equation 29 the solution of
which for f is proportional to N(µ|η, γW ). Similarly,
the solutions for the functions f1, f2, f1|2, and f2|1 are
also proportional to normal pdfs. The constants η and
γ could potentially change from one value of W to an-
other. However, since η1 can only be a function of
W11 − W12W

−1
22 W ′

12 due to the solution for f1, and
since it must also be a function of {W22, W12} due to
the solution for f2|1, it cannot change with W . Simi-
larly η2 cannot change with W . Substituting this so-
lution into Equation 30 and dividing by the common
terms which are equal to f(µ|W ) yields Equation 17
the solution of which for f is a Wishart pdf. 2



Note that the conditions set on W in Theorem 9,
namely, a positive-definite symmetric matrix of real
random variables such that no entry in W is zero, are
necessary and sufficient in order for W to be a preci-
sion matrix of a complete Gaussian DAG model.

4 Local versus Global Parameter
Independence

We have shown that the only pdf for {µ, W} which sat-
isfies global parameter independence, when the num-
ber of coordinates is greater than two, is the normal-
Wishart distribution. We now discuss additional in-
dependence assertions implied by the assumption of
global parameter independence.

Definition Local parameter independence is the as-
sertion that for every DAG model m for X1, . . . , Xn,
there exists a partition of the parameters of each local
distribution into at least two independent sets.

Consider the parameter prior for {mn, bn, vn} when
the prior for {µ, W} is a normal Wishart as specified
by Equations 12 and 13. By a change of variables, we
get

fn(mn, bn, vn) = W (1/vn | α + n − 1, T22 − T ′
12T

−1
11 T12)·

N(bn | T−1
11 T12, T22/vn) · N(mn | νn, αµ/vn)

where the first block corresponds to X1, . . . , Xn−1
and the second block corresponds to Xn. We note
that the only independence assumption expressed by
this product is that mn and bn are independent given
vn. However, by standardizing mn and bn, namely
defining, m∗

n = (mn − νn)/(αµ/vn)1/2 and b∗n =

(T22/vn)1/2(bn − T−1
11 T12), which is well defined be-

cause T22 is positive definite and vn > 0, we obtain a
set of parameters (m∗

n, b∗n, vn) which are mutually in-
dependent. Furthermore, this mutual independence
property holds for every local family and for every
Gaussian DAG model over X1, . . . , Xn. We call this
property the standard local independence for Gaussian
DAG models.

This observation leads to the following corollary of our
characterization theorems.

Corollary 10 If global parameter independence holds
for every complete Gaussian DAG model over
X1, . . . , Xn (n ≥ 3), then standard local parameter
independence also holds for every complete Gaussian
DAG model over X1, . . . , Xn.

This corollary follows from the fact that global pa-
rameter independence implies that, due to Theorem 9,
the parameter prior is a normal-Wishart, and for this
prior, we have shown that standard local parameter
independence must hold.

It is interesting to note that when n = 2, there are dis-
tributions that satisfy global parameter independence
but do not satisfy standard local parameter indepen-
dence. In particular, a prior for a 2 × 2 positive defi-
nite matrix W which has the form W (W |α, T )H(w12),
where H is some real function and w12 is the off-
diagonal element of W , satisfies global parameter in-
dependence but need not satisfy standard local param-

eter independence. Furthermore, if standard local pa-
rameter independence is assumed, then H(w12) must
be proportional to eaw12 , which means that, for n = 2,
the only pdf for W that satisfies global and standard
local parameter independence is the bivariate Wishart
distribution. In contrast, for n > 2, global parameter
independence alone implies a Wishart prior.

5 Discussion

The formula for the marginal likelihood applies when-
ever Assumptions 1 through 5 are satisfied, not only
for Gaussian DAG models. Another important spe-
cial case is when all variables in X are discrete and
all local distributions are multinomial. This case has
been treated in (Heckerman et al. (1995; Geiger and
Heckerman, 1997) under the additional assumption of
local parameter independence. Our generalized deriva-
tion herein dispenses this assumption and unifies the
derivation in the discrete case with the derivation
needed for Gaussian DAG models.

Furthermore, our proof also suggests that the only pa-
rameter prior for complete discrete DAG models with
n ≥ 3 variables that satisfies Assumptions 1 through 5
is the Dirichlet distribution. The added assumption
of local parameter independence, which is essential for
the characterization of the Dirichlet distribution when
n = 2 (Geiger and Heckerman, 1997), seems to be re-
dundant when n ≥ 3, just as it is redundant for the
characterization of the normal-Wishart distribution.

Our characterization means that the assumption of
global parameter independence when combined with
the definition of mh, the assumption of complete model
equivalence, and the regularity assumption, may be
too restrictive. One common remedy for this problem
is to use a hierarchical prior p(θ|η)p(η) with hyperpa-
rameters η. When such a prior is used for Gaussian
DAG models our results show that for every value
of η for which global parameter independence holds,
p(θ|η) must be a normal-Wishart distribution. An-
other possible approach is to select one representative
DAG model from each class of equivalent DAG models,
assume global parametr independence only for these
representatives, and evaluate the marginal likelihood
only for these representatives. The difficulty with this
approach is that when projecting a prior from a com-
plete DAG model to a DAG model with missing edges,
one needs to perform additional high dimensional inte-
grations, before using the parameter modularity prop-
erty (see Section 2). The assumption of global param-
eter independence for all complete DAGs rather than
one, removes the need for this additional integration.
A final approach is to modify the definition of mh to
allow equivalent DAG models to have different param-
eter priors.
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