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1 Introduction

In this paper, we offer three improvements to current
work in causal reasoning. First, current approaches
either take causality as a primitive notion, or provide
only a fuzzy, intuitive definition of cause and effect. In
this paper, we offer a definition of causation in terms
of a more fundamental relation that we call unrespon-
siveness. Qur definition is precise, and can be used
as an assessment aid when someone is having trouble
determining whether or not a relationship is causal.
Also, our definition can help people accurately com-
municate their beliefs about causal relationships.

Second, the current approaches require all relation-
ships to be causal. That is, for any two probabilisti-
cally dependent events or variables & and y in a given
domain, these methods require a user to assert either
that x causes y, y causes x, ¥ and y share a common
cause, or ¢ and y are common causes of an observed
variable. For example, Verma and Pearl’s (1991)
causal model is a directed acyclic graph, wherein ev-
ery node corresponds to a variable and every arc from
nodes x to y corresponds to the assertion that = is a
direct cause of y. When using a causal model to rep-
resent a domain, one of these four causal explanations
must hold for every dependency in the domain.

Our definition of causation 1s local in that it does not
require all relationships to be causal. This property
can be advantageous when making decisions. Namely,
given a particular problem domain consisting of a set
of decisions and observable variables, there may be no
need to assign a causal explanation to all dependencies
in the domain in order to determine a rational course
of action. Consequently, our definition may enable a
decision maker to reason more efficiently.
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Third, we describe a special type of an influ-
ence diagram known as Howard Canonical Form
[Howard, 1990], developed for computing value of in-
formation, and show how it can be used to represent
causal relationships more efficiently than existing rep-
resentations.

2 Background

Fundamental to our discussion is the distinction be-
tween an uncertain variable and a decision variable.
The state of a decision variable is an action chosen by a
person, usually called the decision maker. In contrast,
an uncertain variable is uncertain and its state may
be at most indirectly affected by the decision maker’s
choices. This distinction is made at modeling time by
the decision maker or his agent. For example, a deci-
sion maker who wants to determine whether or not to
smoke would deem the variable smoke to be a decision
variable, whereas this same person would deem the
variable lung cancer, representing whether or not he
develops lung cancer, to be an uncertain variable. We
shall use lowercase letters to denote single variables,
and uppercase letters to denote sets of variables. We
call an assignment of state to every variable in set X
an nstance of X. We use a probability distribution
P{X|Y} to represent a decision maker’s uncertainty
about X, given that a set of uncertain and/or decision
variables Y is known or determined.

We are interested in modeling relationships in a do-
main consisting of uncertain variables U and deci-
sion variables D). In this paper, we use the influence-
diagram representation to illustrate some of our con-
cepts. We assume that the reader is familiar with this
representation.

3 Unresponsiveness

In this section, we introduce the notion of responsive-
ness, a fundamental relation underlying causation. In



the following section, we use this relation to define
causal dependence.

Let us consider the simple decision d of whether or not
to bet heads or tails on the outcome of a coin flip ¢. Let
the variable w represent whether or not we win. Thus,
w 1s a deterministic function of d and ¢: we win if and
only if the outcome of the coin matches our bet. Let us
assume that d and ¢ are probabilistically independent
and that the coin is fair—that is P{heads} = 1/2. In
this case, d and w are also probabilistically indepen-
dent: the probability of a win is 1/2 whether we bet
heads or tails.

In this example, we are uncertain about whether or not
the coin with come up heads, but we can be certain
that whatever the outcome, it would have been the
same had we bet differently. We say that ¢ is unre-
sponsive to d. We cannot make the same claim about
the relationship between d and w. Namely, we know
that w depends on d in the sense that had we made a
different bet d, the state of w would have been differ-
ent. For example, we know that if we had bet heads
and won, then we would have lost if we had best tails.
We say that w is responsive to d.

In general, to determine whether or not uncertain vari-
able x 1s unresponsive to decision d, we have to answer
the query “Would the outcome of & have been the same
had we chosen a different alternative for d?” Queries
of this form are a simple type of counterfactual query,
discussed in the philosophical literature. In our ex-
perience, we have found that people are comfortable
answering such restricted counterfactual queries. One
of the fundamental assumptions of our work presented
here is that these queries are easily answered.

We see that probabilistic independence and unrespon-
siveness are not the same relation. Although both ¢
and w are (individually) probabilistically independent
of d, ¢ is unresponsive to d whereas w is responsive to d.
Nonetheless, if an uncertain variable x is unresponsive
to a decision d, then x and d must be probabilistically
independent. That is, if the outcome of x is not af-
fected by d, then the probability of & given d must be
the same for all states of d.

In the example that we have considered, we have im-
plicitly assumed that after we have made our decision,
the outcome of all uncertain variables are determined,
albeit possibly unknown. We call the outcome of some
or all of the uncertain variables together with our de-
cisions that led to those outcomes a counterfactual
world. In the coin example, we have one binary deci-
sion to make. Regardless of this decision, the coin will
come up either heads or tails, although we do not know
which. If the coin comes up heads, then the counter-
factual worlds are {d = heads,¢ = heads, w = win}
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Figure 1: A decision of whether or not to smoke.

and {d = tails,¢c = heads,w = lose}. If the coin
comes up tails, then the counterfactual worlds are
{d = heads, ¢ = tails,w = lose} and {d = tails,¢c =
tail, w = win}. In general, the decision maker may be
(and usually is) uncertain about which set of counter-
factual worlds is realized.

When an uncertain variable & is responsive to a de-
cision d, x is different in at least two counterfactual
worlds of {z,d}. In some subset of those counterfac-
tual worlds, however, # may be the same. For example,
let us consider a simple decision problem of whether or
not to smoke, illustrated by the influence diagram in
Figure 1. (The arcs are suggestive of causal relation-
ships. Nonetheless, the reader should resist this inter-
pretation until the end of the next section.) Consider
the variables smoke, smoking pleasure, and lung can-
cer, and utility. The variable utilityis responsive to the
decision smoke. Nonetheless, if we consider only the
counterfactual worlds in which the variables smoking
pleasure and lung cancer take on the same instance,
then wutidity will be the same. We say that utidity is
unresponsive to smoke in counterfactual worlds where
smoking pleasure and lung cancer is the same, or that
utility is unresponsive to smoke in worlds limited by
{smoking pleasure lung cancer} for short. We refer
to this concept as limited unresponsiveness.

In general, to determine whether or not an uncertain
variable x is unresponsive to decision d in worlds lim-
ited by y, we have to imagine a scenario where we
decide d and observe x and y and answer the coun-
terfactual query “Would z still be the same had we
decided differently, assuming that we were to find out
(after deciding) that y was the same?”

Limited unresponsiveness has several simple proper-
ties. First, whether an uncertain variable x 1s unre-
sponsive or responsive to d, it will always be unre-
sponsive to d in worlds limited by d.

Second, if = is unresponsive to d, it follows that z
is unresponsive to d in worlds limited by Y for any
set of variables Y. That is, if # is unaffected by d,
then it must be unaffected by d in the subsets of all



counterfactual worlds where Y is the same. In our
decision problem of whether to smoke, for example, if
we believe that genotype would be the same whether
or not we smoke, then we must believe that, genotype
would be the same if lung cancer is the same, whether
or not we smoke. The coin example is a bit more
tricky, due to the deterministic relationship between
{d,c} and w. As we discussed, ¢ is unresponsive to d.
Consequently, ¢ should be unresponsive to d in worlds
limited by w. That is, we should answer “yes” to the
query “Would ¢ still be the same had we bet differently,
assuming that we find out after betting that w is the
same.” Indeed, the answer i1s “yes” trivially, because
the only way that w could be the same is if we had not
changed our bet.

We now formalize these concepts.

Definition 1 (Counterfactual World) Given un-
certain variables X C U and decisions D, a counter-
factual world of X and D is any instance assumed by
X U D after the decision maker chooses a particular
mnstance of D.

We emphasize that the decision maker may be (and
usually is) uncertain about the counterfactual world
that results from deciding D.

Definition 2 ((Un)responsiveness) Given uncer-
tain variables X and decisions D, X is unresponsive to
D, denoted X 4~ D, if X assumes the same instance
wn all counterfactual worlds of X U D. X is respon-
sive to D, denoted X <= D, if X can assume different
wnstances wn different counterfactual worlds of X U D.

Definition 3 (Limited (Un)responsiveness)
Given sets of uncertain variables X and Y and de-
cistons D, X 1is unresponsive to D in worlds limited
by Y, denoted X ¢~y D, if X assumes the same in-
stance in all counterfactual worlds of X UY U D where
Y assumes the same instance. X 1s responsive to D
in worlds limited by Y, denoted X >y D, f X can
assume different instances in different counterfactual
worlds of X UY U D where Y assumes the same in-
stance.

We emphasize that that X and Y refer to the collec-
tions of events some of which—the responsive ones—
occur after decisions D have been made. Also, we note
that the identification of variables that are unrespon-
sive to D does not depend on the order in which the
decisions in D are made. In the remainder of the pa-
per, we will ignore the ordering of decisions.

4 Definition of Cause

Armed with the primitive notions of unresponsiveness
and limited unresponsiveness, we can now formalize
our definition of cause.

Definition 4 (Cause) Given decisions D, the vari-
ables C' are causes for @ with respect to D if (1) z ¢ C,
(2) x is responsive to D, and (3) C is a minimal set
of variables such that x 1s unresponsive to D in worlds
limited by C'—that s, x <= D, and C' s a minimal set
such that © ¢~¢ D.

The first condition simply says that cause is irreflex-
ive. The second condition says that for # to be caused
with respect to decisions D, it must be responsive to
those decisions. The third condition says that if we
can find set of variables Y such that = can be differ-
ent in different counterfactual worlds only when Y 1s
different, then Y must contain a set of causes for z.

Our definition of cause departs from traditional usage
of the term in that we consider causal relationships
relative to a set of decisions. At first glance, this de-
parture may appear to be a drawback of the definition.
Nonetheless, we find this departure has its advantages.
First, we do not require the decisions D to be realizable
in practice or at all. If we want to think about whether
the moon causes the tides, we merely need to imagine
a decision that affects the moon’s orbit (e.g., we can
imagine a decision of whether or not to destroy the
moon). Therefore, our definition does not restrict the
types of causal sentences that we can consider. Sec-
ond, given a set of real decisions to make, it may not
be necessary to determine whether some dependencies
are causal. As we see in the examples that follow,
our decision-based definition makes us provide causal
explanations only for those relationships that matter.
Using our definition, we can reason about cause locally,
not necessarily having to attach a causal explanation
to every dependency.

Our decision problem of whether to smoke helps us
to illustrate the definition. As mentioned, it is rea-
sonable to assert that lung cancer is responsive to
D = {smoke}. Also, it is true trivially that lung can-
cer is conditionally unresponsive to D given {smoke}.
Consequently, by our definition, we can conclude that
{smoke} is a singleton cause for lung cancer. Simi-
larly, we may conclude that {smoke} is a cause for
smoking pleasure. In general, some subset of D will
always be causes for any responsive variable z.

Also, it 1s reasonable to assert that wutility is respon-
sive to D, wutility is conditionally unresponsive to D
given {smoking pleasure, lung cancer}, and there
is no subset C' of {smoking pleasure, lung cancer}



such that wtiity is conditionally unresponsive to
D given C. Therefore, we can conclude that
{smoking pleasure, lung cancer} are causes for util-
ity. We may also conclude that {smoke} is a cause for
utility. This example illustrates an important property
of our definition: causes are not unique.

Someday, it may be possible to use retroviral therapy
to alter one’s genetic makeup. Assuming that a de-
cision of whether or not to undergo such therapy is
available, it is reasonable to assert that lung cancer is
responsive to D = {smoke, retroviral therapy} and
that {smoke, genotype} is a minimal set C' such that
lung cancer is conditionally unresponsive to D given
C. Thus, we can conclude that {smoke, genotype}
are causes for lung cancer. This example demon-
strates that the conclusions drawn about cause and
effect, given our definition, depend on what decisions
are available. Thus, as in our formal definition, we
say that {smoke, genolype} are causes for lung can-
cer with respect to {smoke, retroviral therapy}.

These examples illustrates a benefit of defining cause
with respect to a set of decisions. Given our definition,
not all dependencies need have a causal explanation.
For example, without a retroviral therapy or any other
alternative for modifying genotype, there is little point
in knowing whether genotype causes lung cancer. Our
approach allows us to ignore this question, and still
make a rational decision. Of course, we may believe
that someday such a therapy will be found, in which
case we may want to include the decision of whether
or not to wait a few years before deciding to smoke.
In this case, as our formulation would show, we would
want to know whether genotype is a cause of lung can-
cer.

5 Mapping Variables and Causal
Mechanisms

Howard (1990) introduced a special type of influence
diagram, which has become to be known as an influ-
ence diagram in Howard Canonical Form (HCF). Al-
though developed for the purpose of computing value
of information, it turns out that an HCF influence di-
agram accurately and efficiently encodes causal rela-
tionships. In the remainder of this paper, we describe
HCF and show how it can be used to represent causal
relationships.

An important concept concerning HCF is that of a
mapping variable, which we discuss in this section. To
understand what a mapping variable is, let us con-
sider the relationship between the decision smoke (s)
and the uncertain variable lung cancer (¢). In this
situation, the mapping variable for ¢ as a function of

Table 1: The four states of the mapping variable ¢(s),
which relates smoking and lung cancer.

state 1 state 2 state 3 state 4
smoke no yes no yes no yes no yes
lung cancer | no yes yes no no no yes yes

s, denoted e(s), represents all possible deterministic
mappings from s to e. That is, each state of ¢(s) repre-
sents a possible set of outcomes for ¢, given all possible
choices for s. The states of ¢(s) are shown in Table 1.

When we introduce the mapping variable ¢(s) to a do-
main containing variables ¢ and s, lung cancer becomes
a deterministic function of smoke and ¢(s). For exam-
ple, if smoke is yes and ¢(s) is in state 1, then lung
cancer will be yes. The uncertainty in the relationship
between smoke and lung cancer, formerly associated
with the variable lung cancer, now 1s associated with
the variable ¢(s). In effect, we have extracted the un-
certainty in the relationship between these two vari-
ables, and moved this uncertainty to the node e(s).

When the argument of a mapping variable contains
uncertain variables, things get more complicated. For
example, in our decision problem of whether to smoke,
consider a new variable length of life (I) and the map-
ping variable {(c). Tt may be that, whether or not the
decision maker smokes, he will not get lung cancer. In
this case, [(¢) appears to have no meaning, because ¢
does not take on the state “true.” Nonetheless, we can
imagine a decision where we directly set the variable
lung cancer to each of its states, in which case, the
mapping variable {(¢) becomes well defined.

The notion of “directly setting” a variable is a bit
tricky. For example, we can imagine setting the vari-
able weather forecast to be “rain” by cloud seeding,
but this action i1s not a direct setting of the variable
due to its side effects on the variable weather. In con-
trast, changing the cue cards of the weatherman on
the nightly news can be considered a direct setting of
weather forecast. Pearl and Verma (1991) discuss the
notion of directly setting a variable, taking this con-
cept to be primitive. Here, we define a set decision,
using limited unresponsiveness to capture the meaning
of “direct.”

Definition 5 (Set Decision) Given uncertain vari-
ables U and decisions D, a set decision for & € U with
respect to U and D, denoted &, is a decision variable
in D such that (1) & has alternatives “set x to k” for
each possible state k of x and “do nothing,” and (2) for
all variables y € U, y 1s unresponsive to D in worlds

limited by {x} U D\ {#}.

The idea behind the second condition is that all uncer-



tain variables must assume the same state whether z
remains not set (z=“do nothing”) or z is directly set
to the state it would have assumed had it not been set.
As a matter of notation, we use Y to refer to the col-
lection of set decisions corresponding to the variables
in Y. We can now formally define a mapping variable.

Definition 6 (Mapping Variable) Given
uncertain variables X and variables Y = Yp U Ye,
where Yp and Yo are sets of decision and uncertain
variables, respectively, the mapping variable X (V') is
the uncertain variable that represents all possible map-
pings from Yp UYe to X.

Note that the decisions Y& need only be imagined.
They need not be realizable in practice.

There are several important points to be made about
mapping variables. First, as in our example, X is al-
ways a deterministic function of X (V') and Y.

Second, additional assessments typically are required
when introducing a mapping variable. For exam-
ple, two independent assessments are needed to quan-
tify the relationship between smoke and lung cancer,
whereas three independent assessments are required
for the node ¢(s). In general, many additional as-
sessments are required. If X has r instances and Y
has ¢ instances, then X(Y) will have r¢ states. In
real-world domains, however, reasonable assertions of
independence decrease the number of required assess-
ments. In some cases, no additional assessments are
necessary.

Third, although we may not be able to observe a map-
ping variable directly, we may be able to learn some-
thing about it. For example, we can imagine a test
that measures the susceptibility of someone’s lung tis-
sue to lung cancer in the presence of tobacco smoke.
The probabilities on the outcomes of this test would
depend on ¢(s).

Fourth, and most important, we have the following
theorem.

Theorem 1 (Mapping Variable) Given decisions
D, uncertain variables X, and a set of variables Y,

X ¢y D if and only if X (V) ¢ D.

Roughly speaking, Theorem 1 says that X is unre-
sponsive to decisions D in worlds limited by Y if and
only if the way Y depends on X does not depend on
D. This equivalence provides us with an alternative
set of conditions for cause.

Corollary 2 (Cause) Given decisions D, the vari-
ables C' are causes for x with respect to D if (1) x ¢ C,
(2) x is responsive to D, and (3) C is a minimal set
of variables such that x(C) is unresponsive to D.

We can think of #(C)—where C are causes for z—as a
causal mechanism that relates C' and z. For example,
suppose uncertain variables ¢ and o represent the volt-
age input and output, respectively, of an inverter in a
logic circuit. Given a decision d to which ¢ responds,
we can assert that {i} is a cause for o. In this exam-
ple, the mapping variable o(%), represents the mapping
from the inverter’s inputs to it’s outputs. That 1s, this
mapping variable represents the state of the inverter
itself.

Definition 7 (Causal Mechanism)

Given decistons D and an uncertain variable x that
1s responsive to D, a causal mechanism for x with re-
spect to D is a mapping variable x(C) where C are
causes for .

From Corollary 2, it follows that any causal mechanism
for # with respect to D is unresponsive to D.

6 Howard Canonical Form

We can now define HCF. Although Howard (1990)
does not use our language, his definition is equivalent
to the following:

Definition 8 (Howard Canonical Form) An in-
fluence diagram for uncertain variables U and deci-
stons D s said to be in Howard Canonical Form ¢f
(1) every uncertain node that is not a descendant of
a decision node is unresponsive to D, and (2) every
uncertain node that s a descendant of a decision node
1s a deterministic node.

We can transform any given influence diagram into
one that is in HCF by adding causal-mechanism vari-
ables. For example, the HCF influence diagram cor-
responding to the ordinary influence diagram in Fig-
ure 2a is shown in Figure 2b. In this new influence
diagram, we have added a node corresponding to the
causal mechanism ¢(s). This node becomes the only
non-deterministic uncertain node, and is unresponsive
to D = {smoke}.

The following theorem describes, in general, how we
can construct an influence diagram in HCF for a given
domain.

Theorem 3 (Howard Canonical Form)

Given uncertain variables U and decisions D, an in-
fluence diagram in HCF for U U D can be constructed
as follows:*

1. Add a node to the diagram corresponding to each
variable in U U D

'We are not concerned with information arcs and utility
nodes in this construction.
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Figure 2: A transformation to Howard Canonical

Form.

2. Order the variables x1,...,xz, n U so that the
variables unresponsive to D come first

8. Fori:=1,... . n,ifx; D,

o Add a causal-mechanism node z;(C;) to the
diagram,
where C; € DU{xq,...,¢i—1}

e Make z; a deterministic function of C; U

z; (C)

4. Assess dependencies among the variables that are
unresponsive 1D

Proof: In step 3, all causal-mechanism nodes added to
the diagram will be unresponsive to D and will not be
descendants of decisions. Also, after step 3, all nodes
in U that are responsive to D will be descendants of
D and will be deterministic functions of their parents.
In step 4, only the parents of nodes responsive to D
will be altered. In no case will such a variable gain
any variable in 1) as a parent. O

To illustrate this algorithm, consider the influence di-
agram shown in Figure 3a. We begin the construc-
tion by adding the variables {s,d, g,¢,v} to the dia-
gram and choosing the ordering (g, ¢, v). Both ¢ and
v are responsive to D = {s,d}, and have causes s and
d, respectively. Consequently, we add causal mecha-
nisms ¢(s) and v(d) to the diagram, and make ¢ a de-
terministic function of {s, ¢(s)} and v a deterministic
function of {d, v(d)}. Finally, we assess the dependen-
cies among the unresponsive variables {g, ¢(s),v(d)},
adding arcs from g to ¢(s) and v(d) under the assump-
tion that the causal mechanisms are conditionally in-
dependent given g. The resulting HCF influence dia-
gram is shown in Figure 3b. This example illustrates
an 1mportant point that causal mechanisms may be
dependent.

From our construction, it follows that every respon-
sive variable x; has at least one set of causes explicitly
encoded in the diagram (C;). That is, an HCF con-
structed as in Theorem 3 accurately represents a set
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Figure 3: Another transformation to Howard Canoni-
cal Form.

of causes for every caused variable. In addition, HCF
is an efficient representation of cause. Namely, using
HCF, we can simplify assessments by using our knowl-
edge of what variables can be controlled. For example,
in the decision problem corresponding to Figure 3, if
there was a decision that affected g (e.g., retroviral
therapy), then we would have to construct and assess
the mapping variables ¢(s,g) and v(d,g) (each hav-
ing 16 states assuming s, ¢, d, v, g are binary). Because
there is no such decision, however, we can construct
and assess the mapping variables ¢(s) and v(d) (each
having only four states).

We note that Pearl’s causal theory (e.g., Pearl and
Verma, 1991, Pearl, 1994) is essentially equivalent to
HCF when every uncertain variable has a correspond-
ing set decision. (See our technical report for a de-
tailed discussion of this point.) In particular, Pearl’s
representation does not make use of a decision maker’s
knowledge about which variables can be controlled,
and is consequently less efficient than HCF in many
circumstances.

References

[Howard, 1990] Howard, R. (1990). From influence to
relevance to knowledge. In Oliver, R. and Smith, J.,
editors, Influence Diagrams, Belief Nets, and Deci-
ston Analysis, chapter 1. Wiley and Sons, New York.

[Pearl, 1994] Pearl, J. (1994). A probabilistic calculus
of actions. In Proceedings of Tenth Conference on
Uncertainty in Artificial Intelligence, Seattle, WA.
Morgan Kaufmann.

[Pearl and Verma, 1991] Pearl, J. and Verma, T.
(1991). A theory of inferred causation. In Allen,
J., Fikes, R., and Sandewall, E.; editors, Knowl-
edge Representation and Reasoning: Proceedings of
the Second International Conference, pages 441-
452. Morgan Kaufmann, New York.



