
A Decision-Based View of CausalityDavid HeckermanMicrosoft Research, Bldg 9SRedmond WA 98052-6399heckerma@microsoft.com Ross ShachterDepartment of Engineering-Economic SystemsStanford, CA 94305-4025shachter@camis.stanford.eduThis paper is a summary of work presented ina technical report, which may be obtained viaanonymous ftp at research.microsoft.com://pub/tech-reports/spring94/tr-94-10.ps.1 IntroductionIn this paper, we o�er three improvements to currentwork in causal reasoning. First, current approacheseither take causality as a primitive notion, or provideonly a fuzzy, intuitive de�nition of cause and e�ect. Inthis paper, we o�er a de�nition of causation in termsof a more fundamental relation that we call unrespon-siveness. Our de�nition is precise, and can be usedas an assessment aid when someone is having troubledetermining whether or not a relationship is causal.Also, our de�nition can help people accurately com-municate their beliefs about causal relationships.Second, the current approaches require all relation-ships to be causal. That is, for any two probabilisti-cally dependent events or variables x and y in a givendomain, these methods require a user to assert eitherthat x causes y, y causes x, x and y share a commoncause, or x and y are common causes of an observedvariable. For example, Verma and Pearl's (1991)causal model is a directed acyclic graph, wherein ev-ery node corresponds to a variable and every arc fromnodes x to y corresponds to the assertion that x is adirect cause of y. When using a causal model to rep-resent a domain, one of these four causal explanationsmust hold for every dependency in the domain.Our de�nition of causation is local in that it does notrequire all relationships to be causal. This propertycan be advantageous when making decisions. Namely,given a particular problem domain consisting of a setof decisions and observable variables, there may be noneed to assign a causal explanation to all dependenciesin the domain in order to determine a rational courseof action. Consequently, our de�nition may enable adecision maker to reason more e�ciently.

Third, we describe a special type of an in
u-ence diagram known as Howard Canonical Form[Howard, 1990], developed for computing value of in-formation, and show how it can be used to representcausal relationships more e�ciently than existing rep-resentations.2 BackgroundFundamental to our discussion is the distinction be-tween an uncertain variable and a decision variable.The state of a decision variable is an action chosen by aperson, usually called the decision maker. In contrast,an uncertain variable is uncertain and its state maybe at most indirectly a�ected by the decision maker'schoices. This distinction is made at modeling time bythe decision maker or his agent. For example, a deci-sion maker who wants to determine whether or not tosmoke would deem the variable smoke to be a decisionvariable, whereas this same person would deem thevariable lung cancer, representing whether or not hedevelops lung cancer, to be an uncertain variable. Weshall use lowercase letters to denote single variables,and uppercase letters to denote sets of variables. Wecall an assignment of state to every variable in set Xan instance of X. We use a probability distributionPfXjY g to represent a decision maker's uncertaintyabout X, given that a set of uncertain and/or decisionvariables Y is known or determined.We are interested in modeling relationships in a do-main consisting of uncertain variables U and deci-sion variables D. In this paper, we use the in
uence-diagram representation to illustrate some of our con-cepts. We assume that the reader is familiar with thisrepresentation.3 UnresponsivenessIn this section, we introduce the notion of responsive-ness, a fundamental relation underlying causation. In



the following section, we use this relation to de�necausal dependence.Let us consider the simple decision d of whether or notto bet heads or tails on the outcome of a coin 
ip c. Letthe variable w represent whether or not we win. Thus,w is a deterministic function of d and c: we win if andonly if the outcome of the coin matches our bet. Let usassume that d and c are probabilistically independentand that the coin is fair|that is Pfheadsg = 1=2. Inthis case, d and w are also probabilistically indepen-dent: the probability of a win is 1=2 whether we betheads or tails.In this example, we are uncertain about whether or notthe coin with come up heads, but we can be certainthat whatever the outcome, it would have been thesame had we bet di�erently. We say that c is unre-sponsive to d. We cannot make the same claim aboutthe relationship between d and w. Namely, we knowthat w depends on d in the sense that had we made adi�erent bet d, the state of w would have been di�er-ent. For example, we know that if we had bet headsand won, then we would have lost if we had best tails.We say that w is responsive to d.In general, to determine whether or not uncertain vari-able x is unresponsive to decision d, we have to answerthe query \Would the outcome of x have been the samehad we chosen a di�erent alternative for d?" Queriesof this form are a simple type of counterfactual query,discussed in the philosophical literature. In our ex-perience, we have found that people are comfortableanswering such restricted counterfactual queries. Oneof the fundamental assumptions of our work presentedhere is that these queries are easily answered.We see that probabilistic independence and unrespon-siveness are not the same relation. Although both cand w are (individually) probabilistically independentof d, c is unresponsive to dwhereas w is responsive to d.Nonetheless, if an uncertain variable x is unresponsiveto a decision d, then x and d must be probabilisticallyindependent. That is, if the outcome of x is not af-fected by d, then the probability of x given d must bethe same for all states of d.In the example that we have considered, we have im-plicitly assumed that after we have made our decision,the outcome of all uncertain variables are determined,albeit possibly unknown. We call the outcome of someor all of the uncertain variables together with our de-cisions that led to those outcomes a counterfactualworld. In the coin example, we have one binary deci-sion to make. Regardless of this decision, the coin willcome up either heads or tails, although we do not knowwhich. If the coin comes up heads, then the counter-factual worlds are fd = heads; c = heads; w = wing
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ps and c cause uFigure 1: A decision of whether or not to smoke.and fd = tails; c = heads; w = loseg. If the coincomes up tails, then the counterfactual worlds arefd = heads; c = tails; w = loseg and fd = tails; c =tail; w = wing. In general, the decision maker may be(and usually is) uncertain about which set of counter-factual worlds is realized.When an uncertain variable x is responsive to a de-cision d, x is di�erent in at least two counterfactualworlds of fx; dg. In some subset of those counterfac-tual worlds, however, xmaybe the same. For example,let us consider a simple decision problem of whether ornot to smoke, illustrated by the in
uence diagram inFigure 1. (The arcs are suggestive of causal relation-ships. Nonetheless, the reader should resist this inter-pretation until the end of the next section.) Considerthe variables smoke, smoking pleasure, and lung can-cer, and utility. The variable utility is responsive to thedecision smoke. Nonetheless, if we consider only thecounterfactual worlds in which the variables smokingpleasure and lung cancer take on the same instance,then utility will be the same. We say that utility isunresponsive to smoke in counterfactual worlds wheresmoking pleasure and lung cancer is the same, or thatutility is unresponsive to smoke in worlds limited byfsmoking pleasure; lung cancerg for short. We referto this concept as limited unresponsiveness.In general, to determine whether or not an uncertainvariable x is unresponsive to decision d in worlds lim-ited by y, we have to imagine a scenario where wedecide d and observe x and y and answer the coun-terfactual query \Would x still be the same had wedecided di�erently, assuming that we were to �nd out(after deciding) that y was the same?"Limited unresponsiveness has several simple proper-ties. First, whether an uncertain variable x is unre-sponsive or responsive to d, it will always be unre-sponsive to d in worlds limited by d.Second, if x is unresponsive to d, it follows that xis unresponsive to d in worlds limited by Y for anyset of variables Y . That is, if x is una�ected by d,then it must be una�ected by d in the subsets of all



counterfactual worlds where Y is the same. In ourdecision problem of whether to smoke, for example, ifwe believe that genotype would be the same whetheror not we smoke, then we must believe that, genotypewould be the same if lung cancer is the same, whetheror not we smoke. The coin example is a bit moretricky, due to the deterministic relationship betweenfd; cg and w. As we discussed, c is unresponsive to d.Consequently, c should be unresponsive to d in worldslimited by w. That is, we should answer \yes" to thequery \Would c still be the same had we bet di�erently,assuming that we �nd out after betting that w is thesame." Indeed, the answer is \yes" trivially, becausethe only way that w could be the same is if we had notchanged our bet.We now formalize these concepts.De�nition 1 (Counterfactual World) Given un-certain variables X � U and decisions D, a counter-factual world of X and D is any instance assumed byX [ D after the decision maker chooses a particularinstance of D.We emphasize that the decision maker may be (andusually is) uncertain about the counterfactual worldthat results from deciding D.De�nition 2 ((Un)responsiveness) Given uncer-tain variables X and decisions D, X is unresponsive toD, denoted X 6 - D, if X assumes the same instancein all counterfactual worlds of X [ D. X is respon-sive to D, denoted X  - D, if X can assume di�erentinstances in di�erent counterfactual worlds of X [D.De�nition 3 (Limited (Un)responsiveness)Given sets of uncertain variables X and Y and de-cisions D, X is unresponsive to D in worlds limitedby Y , denoted X 6 -Y D, if X assumes the same in-stance in all counterfactual worlds of X [Y [D whereY assumes the same instance. X is responsive to Din worlds limited by Y , denoted X  -Y D, if X canassume di�erent instances in di�erent counterfactualworlds of X [ Y [ D where Y assumes the same in-stance.We emphasize that that X and Y refer to the collec-tions of events some of which|the responsive ones|occur after decisions D have been made. Also, we notethat the identi�cation of variables that are unrespon-sive to D does not depend on the order in which thedecisions in D are made. In the remainder of the pa-per, we will ignore the ordering of decisions.

4 De�nition of CauseArmed with the primitive notions of unresponsivenessand limited unresponsiveness, we can now formalizeour de�nition of cause.De�nition 4 (Cause) Given decisions D, the vari-ables C are causes for x with respect toD if (1) x 62 C,(2) x is responsive to D, and (3) C is a minimal setof variables such that x is unresponsive to D in worldslimited by C|that is, x - D, and C is a minimal setsuch that x 6 -C D.The �rst condition simply says that cause is irre
ex-ive. The second condition says that for x to be causedwith respect to decisions D, it must be responsive tothose decisions. The third condition says that if wecan �nd set of variables Y such that x can be di�er-ent in di�erent counterfactual worlds only when Y isdi�erent, then Y must contain a set of causes for x.Our de�nition of cause departs from traditional usageof the term in that we consider causal relationshipsrelative to a set of decisions. At �rst glance, this de-parture may appear to be a drawback of the de�nition.Nonetheless, we �nd this departure has its advantages.First, we do not require the decisionsD to be realizablein practice or at all. If we want to think about whetherthe moon causes the tides, we merely need to imaginea decision that a�ects the moon's orbit (e.g., we canimagine a decision of whether or not to destroy themoon). Therefore, our de�nition does not restrict thetypes of causal sentences that we can consider. Sec-ond, given a set of real decisions to make, it may notbe necessary to determine whether some dependenciesare causal. As we see in the examples that follow,our decision-based de�nition makes us provide causalexplanations only for those relationships that matter.Using our de�nition, we can reason about cause locally,not necessarily having to attach a causal explanationto every dependency.Our decision problem of whether to smoke helps usto illustrate the de�nition. As mentioned, it is rea-sonable to assert that lung cancer is responsive toD = fsmokeg. Also, it is true trivially that lung can-cer is conditionally unresponsive to D given fsmokeg.Consequently, by our de�nition, we can conclude thatfsmokeg is a singleton cause for lung cancer. Simi-larly, we may conclude that fsmokeg is a cause forsmoking pleasure. In general, some subset of D willalways be causes for any responsive variable x.Also, it is reasonable to assert that utility is respon-sive to D, utility is conditionally unresponsive to Dgiven fsmoking pleasure; lung cancerg, and thereis no subset C of fsmoking pleasure; lung cancerg



such that utility is conditionally unresponsive toD given C. Therefore, we can conclude thatfsmoking pleasure; lung cancerg are causes for util-ity. We may also conclude that fsmokeg is a cause forutility. This example illustrates an important propertyof our de�nition: causes are not unique.Someday, it may be possible to use retroviral therapyto alter one's genetic makeup. Assuming that a de-cision of whether or not to undergo such therapy isavailable, it is reasonable to assert that lung cancer isresponsive to D = fsmoke; retroviral therapyg andthat fsmoke; genotypeg is a minimal set C such thatlung cancer is conditionally unresponsive to D givenC. Thus, we can conclude that fsmoke; genotypegare causes for lung cancer. This example demon-strates that the conclusions drawn about cause ande�ect, given our de�nition, depend on what decisionsare available. Thus, as in our formal de�nition, wesay that fsmoke; genotypeg are causes for lung can-cer with respect to fsmoke; retroviral therapyg.These examples illustrates a bene�t of de�ning causewith respect to a set of decisions. Given our de�nition,not all dependencies need have a causal explanation.For example, without a retroviral therapy or any otheralternative for modifying genotype, there is little pointin knowing whether genotype causes lung cancer. Ourapproach allows us to ignore this question, and stillmake a rational decision. Of course, we may believethat someday such a therapy will be found, in whichcase we may want to include the decision of whetheror not to wait a few years before deciding to smoke.In this case, as our formulation would show, we wouldwant to know whether genotype is a cause of lung can-cer.5 Mapping Variables and CausalMechanismsHoward (1990) introduced a special type of in
uencediagram, which has become to be known as an in
u-ence diagram in Howard Canonical Form (HCF). Al-though developed for the purpose of computing valueof information, it turns out that an HCF in
uence di-agram accurately and e�ciently encodes causal rela-tionships. In the remainder of this paper, we describeHCF and show how it can be used to represent causalrelationships.An important concept concerning HCF is that of amapping variable, which we discuss in this section. Tounderstand what a mapping variable is, let us con-sider the relationship between the decision smoke (s)and the uncertain variable lung cancer (c). In thissituation, the mapping variable for c as a function of

Table 1: The four states of the mapping variable c(s),which relates smoking and lung cancer.state 1 state 2 state 3 state 4smoke no yes no yes no yes no yeslung cancer no yes yes no no no yes yess, denoted c(s), represents all possible deterministicmappings from s to c. That is, each state of c(s) repre-sents a possible set of outcomes for c, given all possiblechoices for s. The states of c(s) are shown in Table 1.When we introduce the mapping variable c(s) to a do-main containing variables c and s, lung cancer becomesa deterministic function of smoke and c(s). For exam-ple, if smoke is yes and c(s) is in state 1, then lungcancer will be yes. The uncertainty in the relationshipbetween smoke and lung cancer, formerly associatedwith the variable lung cancer, now is associated withthe variable c(s). In e�ect, we have extracted the un-certainty in the relationship between these two vari-ables, and moved this uncertainty to the node c(s).When the argument of a mapping variable containsuncertain variables, things get more complicated. Forexample, in our decision problem of whether to smoke,consider a new variable length of life (l) and the map-ping variable l(c). It may be that, whether or not thedecision maker smokes, he will not get lung cancer. Inthis case, l(c) appears to have no meaning, because cdoes not take on the state \true." Nonetheless, we canimagine a decision where we directly set the variablelung cancer to each of its states, in which case, themapping variable l(c) becomes well de�ned.The notion of \directly setting" a variable is a bittricky. For example, we can imagine setting the vari-able weather forecast to be \rain" by cloud seeding,but this action is not a direct setting of the variabledue to its side e�ects on the variable weather. In con-trast, changing the cue cards of the weatherman onthe nightly news can be considered a direct setting ofweather forecast. Pearl and Verma (1991) discuss thenotion of directly setting a variable, taking this con-cept to be primitive. Here, we de�ne a set decision,using limited unresponsiveness to capture the meaningof \direct."De�nition 5 (Set Decision) Given uncertain vari-ables U and decisions D, a set decision for x 2 U withrespect to U and D, denoted x̂, is a decision variablein D such that (1) x̂ has alternatives \set x to k" foreach possible state k of x and \do nothing," and (2) forall variables y 2 U , y is unresponsive to D in worldslimited by fxg [D n fx̂g.The idea behind the second condition is that all uncer-



tain variables must assume the same state whether xremains not set (x̂=\do nothing") or x is directly setto the state it would have assumed had it not been set.As a matter of notation, we use Ŷ to refer to the col-lection of set decisions corresponding to the variablesin Y . We can now formally de�ne a mapping variable.De�nition 6 (Mapping Variable) Givenuncertain variables X and variables Y = YD [ YC ,where YD and YC are sets of decision and uncertainvariables, respectively, the mapping variable X(Y ) isthe uncertain variable that represents all possible map-pings from YD [ ŶC to X.Note that the decisions ŶC need only be imagined.They need not be realizable in practice.There are several important points to be made aboutmapping variables. First, as in our example, X is al-ways a deterministic function of X(Y ) and Y .Second, additional assessments typically are requiredwhen introducing a mapping variable. For exam-ple, two independent assessments are needed to quan-tify the relationship between smoke and lung cancer,whereas three independent assessments are requiredfor the node c(s). In general, many additional as-sessments are required. If X has r instances and Yhas q instances, then X(Y ) will have rq states. Inreal-world domains, however, reasonable assertions ofindependence decrease the number of required assess-ments. In some cases, no additional assessments arenecessary.Third, although we may not be able to observe a map-ping variable directly, we may be able to learn some-thing about it. For example, we can imagine a testthat measures the susceptibility of someone's lung tis-sue to lung cancer in the presence of tobacco smoke.The probabilities on the outcomes of this test woulddepend on c(s).Fourth, and most important, we have the followingtheorem.Theorem 1 (Mapping Variable) Given decisionsD, uncertain variables X, and a set of variables Y ,X 6 -Y D if and only if X(Y ) 6 - D.Roughly speaking, Theorem 1 says that X is unre-sponsive to decisions D in worlds limited by Y if andonly if the way Y depends on X does not depend onD. This equivalence provides us with an alternativeset of conditions for cause.Corollary 2 (Cause) Given decisions D, the vari-ables C are causes for x with respect to D if (1) x 62 C,(2) x is responsive to D, and (3) C is a minimal setof variables such that x(C) is unresponsive to D.

We can think of x(C)|where C are causes for x|as acausal mechanism that relates C and x. For example,suppose uncertain variables i and o represent the volt-age input and output, respectively, of an inverter in alogic circuit. Given a decision d to which i responds,we can assert that fig is a cause for o. In this exam-ple, the mapping variable o(i), represents the mappingfrom the inverter's inputs to it's outputs. That is, thismapping variable represents the state of the inverteritself.De�nition 7 (Causal Mechanism)Given decisions D and an uncertain variable x thatis responsive to D, a causal mechanism for x with re-spect to D is a mapping variable x(C) where C arecauses for x.FromCorollary 2, it follows that any causal mechanismfor x with respect to D is unresponsive to D.6 Howard Canonical FormWe can now de�ne HCF. Although Howard (1990)does not use our language, his de�nition is equivalentto the following:De�nition 8 (Howard Canonical Form) An in-
uence diagram for uncertain variables U and deci-sions D is said to be in Howard Canonical Form if(1) every uncertain node that is not a descendant ofa decision node is unresponsive to D, and (2) everyuncertain node that is a descendant of a decision nodeis a deterministic node.We can transform any given in
uence diagram intoone that is in HCF by adding causal-mechanism vari-ables. For example, the HCF in
uence diagram cor-responding to the ordinary in
uence diagram in Fig-ure 2a is shown in Figure 2b. In this new in
uencediagram, we have added a node corresponding to thecausal mechanism c(s). This node becomes the onlynon-deterministic uncertain node, and is unresponsiveto D = fsmokeg.The following theorem describes, in general, how wecan construct an in
uence diagram in HCF for a givendomain.Theorem 3 (Howard Canonical Form)Given uncertain variables U and decisions D, an in-
uence diagram in HCF for U [D can be constructedas follows:11. Add a node to the diagram corresponding to eachvariable in U [D1We are not concerned with information arcs and utilitynodes in this construction.
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(a)Figure 2: A transformation to Howard CanonicalForm.2. Order the variables x1; : : : ; xn in U so that thevariables unresponsive to D come �rst3. For i := 1; : : : ; n, if xi  - D,� Add a causal-mechanism node xi(Ci) to thediagram,where Ci � D [ fx1; : : : ; xi�1g� Make xi a deterministic function of Ci [xi(Ci)4. Assess dependencies among the variables that areunresponsive DProof: In step 3, all causal-mechanismnodes added tothe diagram will be unresponsive to D and will not bedescendants of decisions. Also, after step 3, all nodesin U that are responsive to D will be descendants ofD and will be deterministic functions of their parents.In step 4, only the parents of nodes responsive to Dwill be altered. In no case will such a variable gainany variable in D as a parent. 2To illustrate this algorithm, consider the in
uence di-agram shown in Figure 3a. We begin the construc-tion by adding the variables fs; d; g; c; vg to the dia-gram and choosing the ordering (g; c; v). Both c andv are responsive to D = fs; dg, and have causes s andd, respectively. Consequently, we add causal mecha-nisms c(s) and v(d) to the diagram, and make c a de-terministic function of fs; c(s)g and v a deterministicfunction of fd; v(d)g. Finally, we assess the dependen-cies among the unresponsive variables fg; c(s); v(d)g,adding arcs from g to c(s) and v(d) under the assump-tion that the causal mechanisms are conditionally in-dependent given g. The resulting HCF in
uence dia-gram is shown in Figure 3b. This example illustratesan important point that causal mechanisms may bedependent.From our construction, it follows that every respon-sive variable xi has at least one set of causes explicitlyencoded in the diagram (Ci). That is, an HCF con-structed as in Theorem 3 accurately represents a set
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(a) (b)Figure 3: Another transformation to Howard Canoni-cal Form.of causes for every caused variable. In addition, HCFis an e�cient representation of cause. Namely, usingHCF, we can simplify assessments by using our knowl-edge of what variables can be controlled. For example,in the decision problem corresponding to Figure 3, ifthere was a decision that a�ected g (e.g., retroviraltherapy), then we would have to construct and assessthe mapping variables c(s; g) and v(d; g) (each hav-ing 16 states assuming s; c; d; v; g are binary). Becausethere is no such decision, however, we can constructand assess the mapping variables c(s) and v(d) (eachhaving only four states).We note that Pearl's causal theory (e.g., Pearl andVerma, 1991, Pearl, 1994) is essentially equivalent toHCF when every uncertain variable has a correspond-ing set decision. (See our technical report for a de-tailed discussion of this point.) In particular, Pearl'srepresentation does not make use of a decision maker'sknowledge about which variables can be controlled,and is consequently less e�cient than HCF in manycircumstances.References[Howard, 1990] Howard, R. (1990). From in
uence torelevance to knowledge. In Oliver, R. and Smith, J.,editors, In
uence Diagrams, Belief Nets, and Deci-sion Analysis, chapter 1. Wiley and Sons, New York.[Pearl, 1994] Pearl, J. (1994). A probabilistic calculusof actions. In Proceedings of Tenth Conference onUncertainty in Arti�cial Intelligence, Seattle, WA.Morgan Kaufmann.[Pearl and Verma, 1991] Pearl, J. and Verma, T.(1991). A theory of inferred causation. In Allen,J., Fikes, R., and Sandewall, E., editors, Knowl-edge Representation and Reasoning: Proceedings ofthe Second International Conference, pages 441{452. Morgan Kaufmann, New York.


