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Abstract

Value-of-information analyses provide a means for selecting the next best observation
to make, and for determining whether it is better to gather additional information
or to act immediately. Determining the next best test to perform, given uncertainty
about the state of the world, requires a consideration of the value of making all possible
sequences of observations. In practice, decision analysts and expert-system designers
have avoided the intractability of exact computation of the value of information by
relying on a myopic assumption that only one additional test will be performed, even
when there is an opportunity to make a large number of observations. We present an
alternative to the myopic analysis. In particular, we present an approximate method
for computing the value of information of a set of tests, which exploits the statistical
properties of large samples. The approximation is linear in the number of tests, in
contrast to the exact computation, which is exponential in the number of tests. The
approach is not as general as is a complete nonmyopic analysis, in which all possible
sequences of observations are considered. Also, the approximation is limited to specific
classes of dependencies among evidence and to binary hypothesis and decision variables.
Nonetheless, as we demonstrate with a simple application, the approach can offer an
improvement over the myopic analysis.

Keywords: Probability, belief networks, decision theory, value of information, nonmy-
opic.

1 Introduction

When performing diagnosis, a person usually has the opportunity to gather additional in-
formation about the state of the world before making a final diagnosis. Such information
gathering typically is associated with costs and benefits. These costs and benefits can be
balanced with decision-theoretic techniques—in particular, procedures for computing value
of information. These techniques form an integral part of many decision-theoretic expert
systems for diagnosis, such as Gorry and Barnett’s program for the diagnosis of congestive
heart failure [?].

In most diagnosis contexts, a decision maker has the option to perform several tests,
and can decide which test to perform after seeing the results of all previous tests. Thus, a
person or expert system should consider the value of all possible sequences of tests. Such
an analysis is intractable, because the number of sequences grows exponentially with the
number of tests. Builders of expert systems have avoided the intractability of exact value-of-
information computations by implementing myopic or greedy value-of-information analyses.
In such analyses, a system determines the next best test by computing the value of informa-
tion based on the assumption that the decision maker will act immediately after seeing the
results of the single test [?].

The work presented in this article is motivated by Pathfinder, a decision-theoretic ex-
pert system that assists physicians with the diagnosis of lymph-node diseases [?, ?, ?]. The
Pathfinder project began in 1983 as a joint project among researchers (David Heckerman,
Eric Horvitz, Jaap Suermondt, Mark Fischinger, and Larry Fagan) in the Medical Com-
puter Science Group at Stanford University and researchers at the University of Southern
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California (Bharat Nathwani—the primary pathology expert—and Keung-Chi Ng). Cur-
rently, a commercial derivative of Pathfinder, called Intellipath, is being used by several
hundred practicing pathologists and by pathologists in training as an educational tool [?].
The program reasons about over 60 diseases (25 benign diseases, 9 Hodgkin’s lymphomas,
18 non-Hodgkin’s lymphomas, and 10 metastatic diseases) and over 140 features of disease,
including clinical, microscopic, laboratory, immunologic, and molecular biological findings.

In some instances of Pathfinder’s use, a myopic value-of-information analysis is inap-
propriate. For example, suppose that a patient’s primary physician has clinical information
suggesting that the patient may have a serious lymph-node disease. At this point, one al-
ternative available to the patient is a tissue biopsy: the surgical removal of one or more
lymph nodes. If the biopsy is performed, a surgical pathologist examines the tissue using a
microscope, and provides additional evidence for or against each possible disease. The tissue
biopsy can provide a large amount of information, but is costly and subjects the patient to
the risks of general anesthesia.

Pathfinder can assist the patient and physician with the decision of whether or not
to perform a biopsy. Because the program uses a myopic value-of-information analysis,
however, it can balance the cost of the biopsy with the value of only one of approximately
100 microscopic features. Thus, when a biopsy is cost effective, Pathfinder will not likely
recommend one.

In this article, we present a tractable real-time solution to this problem. In particular,
we develop an approach that takes advantage of the statistical properties of large samples
to compute approximately the value of information for sets of tests. The approximation is
linear in the number of tests, in contrast to the exact computation, which is exponential in
the number of tests. The approach is not as general as is a complete nonmyopic analysis,
in which all possible sequences of observations are considered. Also, the approximation is
limited to specific classes of dependencies among evidence and to binary hypothesis and
decision variables. Nonetheless, as we demonstrate with the biopsy example, the approach
can be an improvement over the myopic analysis.

2 A Decision-Theoretic Model for Diagnosis

The diagnostic model for Pathfinder as well as other decision-theoretic expert systems is
represented by the influence diagram in Figure 1. In this model, the chance node H represents
a mutually exclusive and exhaustive set of possible hypotheses, and the decision node D
represents a mutually exclusive and exhaustive set of possible actions or alternatives. The
value node U represents the utility of the decision maker, which depends on the outcome
of H and the decision D. The chance nodes E1, . . . , En are observable pieces of evidence or
tests about the true state of H. Pieces of evidence in Pathfinder are called features.

Insert Figure 1 about here.

In the first part of this article, we make several simplifying assumptions. First, we assume
that H is a binary chance variable and D is a binary decision variable. We use H and ¬H to
denote the two instances of H, and D and ¬D to denote the two alternatives associated with
D. For definiteness, we assume that the decision maker chooses D (as opposed to ¬D), when
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H occurs. Second, we assume that each piece of evidence, E1, . . . , En, is binary. Finally, we
assume that each piece of evidence is conditionally independent of all other evidence, given
H and ¬H. In Section 5, we relax several of these assumptions.

Using Bayes’ theorem and the assumption of conditional independence of evidence, we
can calculate the ratio of the posterior probability of H to that of ¬H:

p(H|Ei, . . . , Em)

P (¬H|Ei, . . . , Em)
=

p(E1|H)

p(E1|¬H)
. . .

p(Em|H)

p(Em|¬H)

p(H)

p(¬H)

We can write this equation more compactly in odds-likelihood form as

O(H|Ei, . . . , Em) = O(H)
mY

i=1

λi (1)

where O(H|Ei, . . . , Em) is the posterior odds of H, λi is the likelihood ratio p(Ei|H)
p(Ei|¬H) , and

O(H) is the prior odds of H.
Because D and H are binary, it follows from the axioms of decision theory that there

exists a threshold probability p∗, such that we should take action D if and only if the
probability of H exceeds p∗. This threshold is the probability of H at which the decision
maker is indifferent between acting and not acting. That is, p∗ is the point where acting and
not acting have equal utility, or

p∗U(H,D) + (1− p∗)U(¬H,D) = p∗U(H,¬D) + (1− p∗)U(¬H,¬D) (2)

In Equation 2, U(H,D) is the decision maker’s utility for the situation where H occurs and
action D is taken, U(H,¬D) is the utility when H occurs and action D is not taken, and so
on. Solving Equation 2 for p∗, we obtain

p∗ =
C

C + B
(3)

where C is the cost of the decision

C ≡ U(¬H,¬D)− U(¬H,D) (4)

and B is the benefit of the decision

B ≡ U(H,D)− U(H,¬D) (5)

If the decision maker has observed pieces of evidence E1, . . . , Em, then the decision maker
should choose action D if and only if

p(H|E1, . . . , Em) > p∗ (6)

In terms of the odds formulation, Equation 6 becomes

O(H|E1, . . . , Em) >
p∗

1− p∗
(7)
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Equations 1 and 7 imply
mY

i=1

λi >
p∗

1− p∗
/ O(H) (8)

Taking the logarithm of both sides of Equation 8, we see that the decision maker should
choose action D if and only if

mX

i=1

wi > ln
p∗

1− p∗
− lnO(H) (9)

where wi ≡ lnλi is called the weight of evidence Ei for H. With the definitions

W ≡ Pm
i=1 wi W ∗ ≡ ln p∗

1−p∗ − lnO(H) (10)

we have the simple prescription that the decision maker should choose action D if and only
if

W > W ∗ (11)

3 Myopic Analysis

Let us assume that the user of a diagnostic system has instantiated zero or more pieces
of evidence in the influence diagram shown in Figure 1. We can propagate the effects of
these instantiations to the uninstantiated nodes, and remove the instantiated nodes from
the influence diagram. This removal leaves an influence diagram of the same form as that
shown in Figure 1. To simplify our notation, we continue to refer to the remaining pieces of
evidence as E1, . . . , En. Also, we use p(H) to refer to the probability of the hypothesis H,
given the instantiated evidence.

The decision maker now considers whether he should observe another piece of evidence
before acting. A myopic procedure for identifying such evidence computes, for each piece
of evidence, the expected utility of the decision maker under the assumption that the deci-
sion maker will act after observing only that piece of evidence. In addition, the procedure
computes his expected utility if he does not observe any evidence before making his deci-
sion. If, for each piece of evidence, the expected utility given that evidence is less than the
expected utility given no evidence, then the decision maker acts immediately in accordance
with Equation 11. Otherwise, the decision maker observes the piece of evidence with the
highest expected utility. Then, the myopic procedure repeats this computation to identify
additional evidence for observation. Because the myopic procedure allows for the gathering
of additional evidence, the procedure is inconsistent with its own assumptions. We return
to this observation in the next section.

In the remainder of this section, we examine the computation of expected utilities and
introduce notation. Let EU(E,CE) denote the expected utility of the decision maker who
will observe E at cost CE, and then act. Let CE(E,CE) be the certain equivalent of this
situation. That is,

U(CE(E,CE)) ≡ EU(E,CE) (12)

or
CE(E,CE) = U−1(EU(E,CE)) (13)
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where U(·) is the decision maker’s utility function: a monotonic increasing function that
maps the value of an outcome (e.g., in dollars) to the decision maker’s utility for that
outcome. Similarly, let EU(∅, 0) denote the expected utility of the decision maker if he acts
immediately, and let CE(∅, 0) denote the certain equivalent of this situation. Thus, in the
myopic procedure, a decision maker should observe the piece of evidence E for which the
quantity

CE(E,CE)− CE(∅, 0) (14)

is maximum, provided it is greater than 0.
To simplify the discussion, we assume that the delta property holds.1 The delta property

states that an increase in value of all outcomes in a lottery by an amount 4 increases the
certain equivalent of that lottery by 4 [?]. Under this assumption, we obtain

CE(E,CE) = CE(E, 0)− CE (15)

where CE(E, 0) is the certain equivalent of observing E at no cost. Therefore, we have

CE(E,CE)− CE(∅, 0) = V I(E)− CE (16)

where
V I(E) ≡ CE(E, 0)− CE(∅, 0) (17)

is the value of information of observing E.2 The quantity V I(E) represents the largest
amount that the decision maker would be willing to pay to observe E. When we compare
Expression 14 with Equation 16, we see that, in the myopic procedure, a decision maker
should observe the piece of evidence E (if any) for which the quantity

V I(E)− CE ≡ NV I(E) (18)

is maximum and positive. We call NV I(E) the net value of information of observing E.
The decision maker usually specifies directly the cost of observing evidence. In contrast,

we can compute V I(E) from the decision maker’s utilities and probabilities. Specifically,
from Equations 13 and 17, we have

V I(E) = U−1(EU(E, 0))− U−1(EU(∅, 0))

To simplify notation, we use the abbreviations

EU(E, 0) ≡ EU(E) and EU(∅, 0) ≡ EU(∅)

Thus, we obtain
V I(E) = U−1(EU(E))− U−1(EU(∅)) (19)

1The primary result of this research—that we can use the central-limit theorem to make tractable an
approximate nonmyopic analysis—is unaffected by this assumption.

2Other names for V I(E) include the value of perfect information of E and the value of clairvoyance on
E.
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The computation of EU(∅) is straightforward. We have

EU(∅) =






p(H) U(H,¬D) + p(¬H) U(¬H,¬D), p(H) ≤ p∗

p(H) U(H,D) + p(¬H) U(¬H,D), p(H) > p∗
(20)

by definition of p∗.
To compute EU(E), let us assume that E is defined such that observing E to be true

increases the probability that H is true. If p(H|E) > p∗ and p(H|¬E) > p∗, then V I(E) = 0,
because the decision maker will not change his decision if he observes E. Similarly, if
p(H|E) < p∗ and p(H|¬E) < p∗, then V I(E) = 0. Thus, we need only to consider the case
where p(H|E) > p∗ and p(H|¬E) < p∗. Let us consider separately the cases H and ¬H. We
have

EU(E|H) = p(E|H) U(H,D) + p(¬E|H) U(H,¬D) (21)

and
EU(E|¬H) = p(E|¬H) U(¬H,D) + p(¬E|¬H) U(¬H,¬D) (22)

where EU(E|H) and EU(E|¬H) are the expected utilities of observing E, given H and ¬H,
respectively. To obtain the expected utility of observing E, we average these two quantities
over H:

EU(E) = p(H) EU(E|H) + p(¬H) EU(E|¬H) (23)

To compute V I(E), we combine Equations 19, 20, and 23.

4 A Special-Case Nonmyopic Analysis

As we mentioned in the previous section, the myopic procedure for identifying cost-effective
observations includes the incorrect assumption that the decision maker will act after ob-
serving only one piece of evidence. This myopic assumption can deleteriously affect the
performance of an expert system, as described in the introduction.

In a correct identification of cost-effective evidence, an expert system should take into
account the fact that a person can observe more than one piece of evidence before acting. In
its most general form, this computation should consider all possible observation strategies.
An example of an observation strategy is

Observe E3. If E3 is present, then observe E2; otherwise, make no further obser-
vations and make the diagnosis. If E3 and E2 are present, then observe E7, and
make the diagnosis. If E3 is present and E2 is absent, then make the diagnosis.

In this article, we consider a special-case nonmyopic analysis that considers only two
observation strategies: (1) perform a set of tests, and then make the diagnosis, and (2)
make the diagnosis immediately (the trivial observation strategy). The general nonmyopic
analysis reduces to this special case when there is a specific dependency among the costs of
performing tests. Namely, the general nonmyopic analysis reduces to this special case when
there are a set of tests such that the cost of performing any test in the set is high, and
once any test in the set has been performed, the cost of performing additional tests in the
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set is significantly reduced. This special-case analysis is appropriate for the biopsy example
discussed in the introduction.

Let us suppose that the decision maker has the option to observe a particular subset
of evidence {E1, . . . , En} before acting. We assume that the costs of observing the pieces
of evidence in this set are dependent as described in the previous paragraph, and that the
decision maker can specify directly the initial cost of observing a piece of evidence in this
set. There are 2n possible instantiations of the evidence in this set, corresponding to the
observation of Ei or ¬Ei for every i. Let E denote an arbitrary instantiation; let ED and E¬D

denote the set of instantiations E such that the optimal decision is D and ¬D, respectively.
The computation of the value of information for the observation of the set {E1, . . . , En}

parallels the myopic computation. In particular, we have

EU(E1, . . . , En) = p(H) EU(E1, . . . , En|H) + p(¬H) EU(E1, . . . , En|¬H) (24)

where

EU(E1, . . . , En|H) =




X

E∈ED

p(E|H)



 U(H,D) +




X

E∈E¬D

p(E|H)



 U(H,¬D) (25)

and

EU(E1, . . . , En|¬H) =




X

E∈ED

p(E|¬H)



 U(¬H,D) +




X

E∈E¬D

p(E|¬H)



 U(¬H,¬D) (26)

To obtain V I(E), we combine Equations 19, 20, and 24.
When n is small, we can compute directly the sums in Equations 25 and 26. When n

is large, we can compute these sums using an approximation that involves the central limit
theorem as follows. First we express the sums in terms of weights of evidence. We have

X

E∈ED

p(E|H) = p(W > W ∗|H) (27)

X

E∈ED

p(E|¬H) = p(W > W ∗|¬H) (28)

X

E∈E¬D

p(E|H)) = 1− p(W > W ∗|H) (29)

X

E∈E¬D

p(E|¬H)) = 1− p(W > W ∗|¬H) (30)

where W and W ∗ are defined in Equation 10. The term p(W > W ∗|H), for example, is
the probability that the sum of the weight of evidence from the observation of E1, . . . , En

exceeds W ∗. That is, p(W > W ∗|H) is the probability that the decision maker will take
action D after observing the evidence, given that H is true.

Next, let us consider the weight of evidence for one piece of evidence. We have
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wi p(wi|H) p(wi|¬H)

ln p(Ei|H)
p(Ei|¬H) p(Ei|H) p(Ei|¬H)

ln p(¬Ei|H)
p(¬Ei|¬H) p(¬Ei|H) p(¬Ei|¬H)

To simplify notation, we let p(Ei|H) = α and p(Ei|¬H) = β. The expectation and variance
of w, given H and ¬H, are then

EV (w|H) = α ln
α

β
+ (1− α) ln

(1− α)

(1− β)
(31)

V ar(w|H) = α(1− α)ln2α(1− β)

β(1− α)
(32)

EV (w|¬H) = β ln
α

β
+ (1− β) ln

(1− α)

(1− β)
(33)

V ar(w|¬H) = β(1− β)ln2α(1− β)

β(1− α)
(34)

Now, we take advantage of the additive property of weights of evidence. The central-
limit theorem states that the sum of independent random variables approaches a normal
distribution when the number of variables becomes large. Furthermore, the expectation and
variance of the sum is just the sum of the expectations and variances of the individual random
variables, respectively. Because we have assumed that evidence variables are independent,
given H or ¬H, the expected value of the sum of the weights of evidence for E1, . . . , En is

EV (W |H) =
mX

i=1

EV (wi|H) (35)

The variance of the sum of the weights is

V ar(W |H) =
mX

i=1

V ar(wi|H) (36)

Thus, p(W |H), the probability distribution over W , is given by

p(W |H) ∼ N(
mX

i=1

EV (wi|H),
mX

i=1

V ar(wi|H)) (37)

The expression for ¬H is similar.
Finally, given the distributions for H and ¬H, we evaluate Equations 27 through 30

using an estimate or table of the cumulative normal distribution. We have

p(W > W ∗|H) =
1

σ
√

2π

Z ∞

W∗
e
−(t−µ)2

2σ dt (38)

where µ = EV (W |H) and σ = V ar(W |H). The probability that the weight will exceed W ∗

corresponds to the shaded area in Figure 2. Again, the expression for ¬H is similar. In this
analysis, we assume that no probability (p(Ei|H) or p(Ei|¬H)) is equal to 0 or 1. Thus, all
expected values and variances are finite. We relax this assumption in the next section.

Insert Figure 2 about here.
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5 Relaxation of the Assumptions

We can relax the assumption that evidence is two-valued with little effort. In particular,
we can extend easily the odds-likelihood inference rule, Equation 1, and its logarithmic
transform, to include multiple-valued evidential variables. In addition, the computation of
means and variances for multiple-valued evidential variables (see Equations 31 through 34)
is straightforward.

In addition, we can relax the assumption that no probability is equal to 0 or 1. For
example, let us suppose that

0 < p(Ej|H) = α < 1 p(Ej|¬H) = β = 1

and, for all i 6= j,
0 < p(Ei|H) < 1 0 < p(Ei|¬H) < 1

Using Equations 31 through 34, we obtain

EV (wj|H) = +∞ V ar(wj|H) = +∞
EV (wj|¬H) < 0 V ar(wj|¬H) = 0

Therefore, although the computation of p(W > W ∗|¬H) is straightforward, we cannot com-
pute p(W > W ∗|H) as described in the previous section. Instead, we compute p(W >
W ∗|H), by considering separately the cases Ej and ¬Ej. We have

p(W > W ∗|H) = p(Ej|H) p(W > W ∗|H,Ej) + p(¬Ej|H) p(W > W ∗|H,¬Ej) (39)

If ¬Ej is observed, W = +∞, and p(W > W ∗|H,¬Ej) = 1. Consequently, Equation 39
becomes

p(W > W ∗|H) = p(Ej|H) p(W > W ∗|H,Ej) + p(¬Ej|H)

We compute p(W > W ∗|H,Ej) as described in Equations 35 through 38, replacing EV (wj|H)
with wj in the summation of Equation 35, and V ar(wj|H) with 0 in the summation of Equa-
tion 36. The other terms in the summations remain the same, because we have assumed
that evidence variables are independent, given H or ¬H. This approach generalizes easily
to multiple-valued evidence variables and to cases where more than one probability is equal
to 0 or 1.

We can extend our analysis to special cases of conditional dependence among evidence
variables. For example, Figure 3 shows a schematic of the belief network for Pathfinder.
In this model, there are groups of dependent evidence, where each group is conditionally
independent of all other groups. We can apply our analysis to this model by using a clustering
technique described by [?][pages 197–204]. As in the previous section, suppose we want to
compute the value of information for the set of evidence S = {E1, . . . , En}. For each group
of dependent features Gk, we cluster those variables in the intersection of S and Gk into a
single variable. Then, we average out all variables in the belief network that are not in S. We
obtain clusters of variables each of which are conditionally independent, given H and ¬H.
We can now apply our analysis—generalized to multiple-valued variables—to this model.

Insert Figure 3 about here.
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There are special classes of dependent distributions for which the central-limit theorem
is valid. We can use this fact to extend our analysis to other cases of dependent evidence.
For example, the central-limit theorem applies to distributions that form a Markov chain,
provided the transition probabilities in the chain are not correlated [?]. Thus, we can extend
our analysis to belief networks of the form shown in Figure 4. We can generalize the value-
of-information analysis even further, if we use the Markov extension in combination with the
clustering approach described in the previous paragraph.

Insert Figure 4 about here.

It is difficult for us to extend the analysis to include multiple-valued hypotheses and
decisions. The mathematics becomes more complex, because the simple p∗ model for action
no longer applies. There is, however, the opportunity for applying our technique to more
complex problems. In particular, we can abstract a given decision problem into one involving
a binary hypothesis and decision variable. For example, we can abstract the problem of
determining which of n diseases is present in a patient into one of determining whether the
disease is malignant (i.e., cancer) or benign. In doing so, we ignore details of the decision
maker’s preferences, and we introduce dependencies among evidence variables. Nonetheless,
the benefits of a nonmyopic analysis may outweigh these drawbacks in some domains.

6 A Simple Application

Let us return to the situation described in the introduction: A patient’s primary care physi-
cian believes, based on clinical evidence, that the patient may have a malignant lymph-node
disease. The patient may receive a lymph-node biopsy, at high cost, before a treatment deci-
sion is made. If the biopsy is performed, a pathologist can inspect the tissue microscopically,
thereby providing a large number of observations that are clues about the patient’s disease.

As described in the previous section, we abstract the diagnostic problem to that of
determining whether or not the patient has a malignant or benign disease. In addition, we
assume that there are only two treatment alternatives: (1) treat the patient as if he had a
malignant disease—that is, treat the patient with chemotherapy, surgery, radiation therapy,
or some combination of these procedures—or (2) do not treat the patient, but merely watch
his progress carefully.

To simplify the discussion, we consider only a fraction of clues made available by the
pathologist. In particular, we consider only those features that describe follicles—spherical
aggregates of multiplying white cells—in a lymph-node section. Also, we assume that the
clinical and microscopic observations are conditionally independent, given the patient’s dis-
ease. Consequently, we do not have to consider interactions among the two information
sets.

The influence diagram for the pathologist’s diagnostic task is shown in Figure 5. The
hypothesis node contains the two disease instances: malignant (H) and benign (¬H). The
decision node contains two alternatives: treat (D) and watch (¬D). The node U represents
the patient’s utility for the four possible outcomes: (Malignant, Treat), (Malignant, Watch),
(Benign, Treat), and (Benign, Watch). The evidence variables represent microscopic ob-
servations about the follicles that provide clues about the disease state of the patient. For
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example, the feature “Area” represents the percent area of the lymph-node section occu-
pied by follicles; and the feature “Polarity” represents whether one or more follicles have a
uniform appearance or exhibit different distributions of cell types at opposite poles. The
influence diagram was constructed from data (48 patients) using the K2 algorithm [?].3

Insert Figure 5 about here.

To simplify the discussion further, we express the utilities of the four possible outcomes
in dollars. The values we use are

U(Malignant, Treat) = −$300K U(Malignant, Watch) = −$800K
U(Benign, Treat) = −$100K U(Benign, Watch) = $0

In addition, we assume that the decision maker is an expected-value decision maker. That
is, we assume U(X) = X, so that expected value and expected utility are the same quantity,
and so that the delta property holds. Finally, for the cost of the biopsy, we use

CBiopsy = $30K

This utility model is inappropriate for most medical decisions, including this one. Utility
models appropriate for medicine can be found in [?], [?], and [?].

Let us assume that, given the clinical information available to the patient’s primary care
physician, p(Malignant) = 0.1. From Equations 4 and 5, we have

C = $0− (−$100K) = $100K B = −$300K − (−$800K) = $500K

where C and B are the cost and benefit of treating the patient, respectively. Thus, from
Equation 3, we obtain

p∗ =
$100K

$100K + $500K
=

1

6
where p∗ is the probability above which the patient should be treated. Consequently, from
Equation 10, we have

W ∗ = ln
1/6

5/6
− ln

0.1

0.9
= 0.588

The patient should be treated if and only if W—the weight of evidence that the patient has
a malignant disease—exceeds this value of W ∗.

Figure 6 is a plot of p(W > W ∗|Malignant) and p(W > W ∗|Benign) as a function
of W ∗, assuming that all of the features in Figure 5 are observed. The curves labeled
“exact” show the exact values; the curves labeled “approx” show the values obtained from the
central-limit-theorem approximation with the generalizations for nonbinary and dependent
features described in Section 5. Note the goodness of the approximation with only eight
observed features. With W ∗ = 0.588, the approximate values for p(W > W ∗|Malignant)
and p(W > W ∗|Benign) obtained from the approximation are

p(W > W ∗|Malignant) = 0.923 p(W > W ∗|Benign) = 0.028

The inequality p(W > W ∗|Malignant) > p(W > W ∗|Benign) states that it is more likely
for the evidence to suggest a malignancy when the patient has a malignancy then when the
patient has a benign disease—a reasonable result.

3The full specification of the influence diagram, including probabilities, is available from the first author.
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Insert Figure 6 about here.

We can now compute the net value of information for a biopsy that permits the obser-
vation of all features in Figure 6. From Equations 25, 27, and 29, we have

EU(Biopsy|Malignant) = (0.923)(−$300K) + (0.077)(−$800K) = −$338K

where EU(Biopsy|Malignant) is the expected utility of obtaining the biopsy, given that the
patient has a malignant disease. Similarly, from Equations 26, 28, and 30, we obtain

EU(Biopsy|Benign) = (0.028)(−$100K) + (0.972)($0) = −$3K

where EU(Biopsy|Benign) is the expected utility of obtaining the biopsy, given that the
patient has a benign disease. Thus, from Equation 24, we have

EU(Biopsy) = (0.1)(−$338K) + (0.9)(−$3K) = −$36K

To obtain the patient’s expected utility without a biopsy, EU(∅), we apply Equation 20,
with p < p∗.

EU(∅) = (0.1)(−$800K) + (0.9)($0) = −$80K

Consequently, from Equation 19, the value of information of the biopsy, V I(Biopsy), is given
by

V I(Biopsy) = −$36K − (−$80K) = $44K

Finally, from Equation 18, we have

NV I(Biopsy) = $44K − $30K = $14K

for the net value of information of the biopsy. Because this value is greater than 0, the
biopsy should be performed. We obtain the same recommendation using the exact values
for p(W > W ∗|Malignant) and p(W > W ∗|Benign) (NV I(Biopsy) = $12K).

In a myopic analysis of value of information, a biopsy would not be recommended. In par-
ticular, of all the features, “Polarity” has the greatest value of information—V I(Polarity) =
$25K—which is less than the cost of the biopsy.

7 More General Nonmyopic Analyses

The nonmyopic analysis described in this article is unlikely to be useful unless the depen-
dencies among observation costs fit the model described in Section 4. Nonetheless, we can
use the techniques developed in the article for more general nonmyopic analyses.

For example, suppose that n pieces of evidence are available for observation, and that
the myopic analysis determines that no single piece of evidence has a positive net value of
information. We may be able to identify evidence whose observation is cost effective by
(1) enumerating sets of evidence whose observation are likely to be cost effective, and (2)
applying our approximate analysis to each such set.

One heuristic for identifying sets of evidence whose observation are likely to be cost
effective is as follows. First, arrange the pieces of evidence in descending order of their
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net values of information. Specifically, label the pieces of evidence E1, . . . , En, such that
NV I(Ei) ≥ NV I(Ej), if i < j. Then, consider subsequences of E1, . . . , En that begin with
E1. That is, identify for consideration the sets {E1, . . . , Em}, m = 2, . . . , n.

Empirical studies are needed to determine whether this or other generalizations provide
significant improvements over a myopic analysis.

8 Summary

We have described an approach using the central-limit theorem to compute the value of
information for a set of tests. Our procedure provides a nonmyopic, yet tractable alternative
to the traditional myopic analysis for determining the next best piece of evidence to observe.
Our approach is limited to information-acquisition decisions for problems involving specific
classes of dependencies among evidence variables, and binary hypothesis and action variables.
Nonetheless, as we have demonstrated, the approach can offer an improvement over the
myopic analysis.
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Figure 1: The Pathfinder influence-diagram for diagnosis. The decision-maker’s utility (di-
amond node, U) depends on a hypothesis (oval node, H) and a decision (square node, D).
The variables Ei are pieces of evidence or tests about the true state of H.
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Figure 2: The probability that the total weight of evidence will exceed the threshold weight
is the area under the normal curve above the threshold weight W ∗ (shaded region).
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Figure 3: A schematic belief network for Pathfinder. (a) The features in Pathfinder can be
arranged into groups of evidence variables G1, G2, . . . , Gj. The variables within each group
are dependent, but the groups are conditionally independent, given the disease variable H.
(b) A detailed view of the evidence variables Ei, Ei+1, and Ei+2 within group Gk.
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Figure 4: A conditional Markov chain. The evidence variables form a Markov chain condi-
tioned on the variable H. We can extend our analysis involving the central-limit theorem to
this case.
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Figure 5: An influence diagram for a subset of lymph-node diagnosis. The hypothesis node
represents whether the patient has a malignant or benign disease. The decision node rep-
resents the two alternatives: treat and watch. The node U represents the patient’s utility
for the four possible outcomes. The evidence variables represent follicular features that are
clues about the disease state of the patient.
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Figure 6: A plot of p(W > W ∗|Benign) and p(W > W ∗|Malignant) as a function of W ∗,
showing both the the exact and approximate values.
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